DEPARTMENT OF CHEMISTRY HOLY CROSS COLLEGE (AUTONOMOUS) NAGERCOIL - 4 Nationally Re-Accredited with 'A⁺' Grade

(CGPA 3.35) by NAAC

Syllabus – PG Semester I & IV

(With effect from the academic year 2020-2021)

Master of Science Programme Educational Objectives (PEOs)

PEO No.	Upon completion of M.Sc. degree programme, the graduates
PEO - 1	apply scientific and computational technology to solve social issues and pursue research
PEO - 2	continue to learn and advance their careers in industry both in public and private sectors, government and academia
PEO - 3	imbibe ethical standards, teamwork, leadership, communication skills and professionalism with global competencies addressing chemistry related issues to the society

Programme Outcomes (POs)

PO No.	Upon completion of M.Sc. degree programme, the graduates will be able to:
PO-1	acquire scientific skills and innovative ideas in their own discipline
PO-2	identify, formulate, perform research and contribute to the developmental needs of the society
PO-3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe
PO-4	emerge as expressive, ethical and responsible citizens with proven expertise

PSO No.	Upon completion of M.Sc Chemistry programme, the graduates will be able to:				
PSO-1	impart in-depth knowledge about various aspects of chemistry within an				
	environment committed to excellence				
PSO-2	develop critical thinking, technical skills and innovative ideas in analysing and				
	solving problems in the field of chemistry				
PSO-3	explore and expedite the recent avenues in chemistry research across the globe				
	with professional competency				
PSO-4	inculcate positive approach towards environment and ecology from the chemistry				
	perspective				
PSO-5	promote entrepreneurial skills and become self-reliant				

M.Sc Chemistry Programme Specific Outcomes (PSOs)

Semester I Structure and Bonding (Core I) Subject Code: PG2011

No. of hours per week	Credit	Total no. of hours	Marks	
6	5	90	100	

Objectives:

- To provide knowledge about the concepts in structure and bonding of simple molecules
- To understand the structure and diffraction methods of solids
- To attain knowledge about the structure of boron, inorganic chains and cluster compounds

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the structure and bonding in inorganic compounds	PSO-1	U
CO-2	apply the concepts of chemical bonding to predict the structure of compounds	PSO-2	А
CO-3	analyze the types of bonding, crystal lattices and crystal defects	PSO-2	Y
CO-4	evaluate bond energy, lattice energy and properties of inorganic compounds	PSO-2	E

Unit I Chemical Bonding

(18 Hours)

(18 Hours)

VB approach to bonding - Heitler-London - Pauling and Slater refinements. Concept of hybridization and structure of molecules. VSEPR theory - shapes of molecules. MO approach to covalent bonding - symmetry and overlap of atomic orbitals - symmetry of molecular orbitals - sigma and pi bonding - energy levels in homo and hetero nuclear diatomic systems - bond length - bond order and bond energy - application to small molecules such as BeCl₂ - BCl₃ - CCl₄ and SF₄. Ionic character in a covalent bond and concept of multicentre bonding. Pseudo halogens - structure and bonding in ClF₃ - BrF₃ - BrF₅ - IF₅ - IF₇ etc. Oxides and oxyacids of halogens. Bonding in noble gas compounds - XeCl₂ - XeF₄ - XeOF₄ and XeF₆.

Unit II Chemistry of Solid State I

Weak chemical forces - van der Waals forces and hydrogen bonding. Close packing of atoms and ions - HCP and BCC - types of packing voids - radius ratio - derivation - its influence on structures. Lattice energy - Born-Lande equation - Kapustinski equation and Madelung constant. Representative structures of AB and AB_2 types of compounds - rock salt - cesium chloride - wurtzite - zinc blende - rutile - fluorite - antifluorite - cadmium iodide and

nickel arsenide. Structure of graphite and diamond. Spinels - normal and inverse types and perovskite structures.

Unit III Chemistry of Solid State II

Defects in crystal - line - plane defects - stoichiometry and non-stoichiometry defects. Band theory of solids. Electrical properties of solids - conductor - insulator - semiconductor intrinsic and extrinsic semiconductors. Optical properties - lasers and phosphors. Elementary study of liquid crystals. Difference between point group and space group - screw axis - glide plane - symmetry elements - relationship between molecular symmetry and crystallographic symmetry. Concept of reciprocal lattice. X-ray diffraction by single crystal - rotating crystal and powder diffraction. Neutron diffraction - elementary treatment and comparison with Xray diffraction. Electron diffraction- basic principle. Crystal growth methods from melt and solution. Hydrothermal and gel methods.

Unit IV Boron Compounds and Clusters

Chemistry of boron - preparation - properties and structure of boranes - higher boranes - borazines - boron nitrides - hydroborate ions - STYX numbers - Wade's rules.

Carboranes - types - preparation - properties and structure of nido - closo - arachno. Metallocarboranes - general study. Metal clusters - chemistry of low molecularity metal clusters. Structure of Re₂Cl₈ and multiple metal-metal bonds.

Unit V Inorganic Chain and Cluster Compounds

Types of inorganic polymers - comparison with organic polymers - silanes - higher silanes - multiple bonded systems - silicon nitrides and siloxanes. P-N compounds - cyclophosphazenes and cyclophosphazenes. S-N compounds - S_4N_4 and $(SN)_x$.

Isopoly and heteropoly acids - structure and bonding of 6- and 12- isopoly and heteropoly anions. Structure of silicates - applications of Paulings rule of electrovalence - isomorphous replacements in silicates - ortho - meta and pyro silicates - one dimensional - two dimensional and three dimensional silicates.

Text Books:

- Cotton, F.A. & Wilkinson, G. (1999). Advance Inorganic Chemistry. (6thed.). New York: Wiley Interscience.
- Puri B.R., Sharma, L.R. & Kalia, K.C. (2012). Principles of Inorganic Chemistry. (4th ed.). India: Milestone publishers.

(18 Hours)

(18 Hours)

(18 Hours)

- Kittle, C. (2012). Introduction to Solid State Physics. (8thed.). New York: Wiley Eastern Ltd.
- Puri, R.K. & Babber, V.K. (2001). Solid State Physics. (1st ed.). India: S. Chand and Company Ltd.
- Lee, J.D. (2008). Concise Inorganic Chemistry. (5thed.). New York: Wiley Interscience.
- Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. (2011). Inorganic Chemistry: Principles of Structure and Reactivity. (4thed.). India: Pearson Education.

Reference Books:

- Purcell, K.F. & Kotz, J.C. (2012). Inorganic Chemistry. (2nd ed.). India: Cengage Learning India Pvt. Ltd.
- 2. Azaroff, L.V. (1989). Introduction to Solids.India: Tata McGraw Hill Publishing Ltd.
- Dougles, D.E., McDaniel, D.H.& Alexander, J.J. (1994). Concepts and Models of Inorganic Chemistry. (3rded.). New York: John Wiley and Sons Ltd.
- Malik, W.U., Tuli, G.D. & Madan, R.D. (2012). Selected topics Inorganic Chemistry. (5thed.). New Delhi: S. Chand Company Ltd.
- 5. Miessler, G.L. (2004). Inorganic Chemistry, (3rded.). India: Pearson Education.

Module

С	Credit: 5 *Total Hours: 90 (Incl. Seminar & Test)					
Unit	Section	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Chemica	l Bonding				
	1	VB approach to bonding - Heitler-London - Pauling and Slater refinements. Concept of hybridization and structure of molecules.	3	Understand the concept of hybridization and structure of molecules	Lecture with ppt	Evaluation through online quiz Formative assessment I
	2	VSEPR theory - shapes of molecules. MO approach to covalent bonding - symmetry and overlap of atomic orbitals - symmetry of molecular orbitals - sigma and pi bonding - energy levels in homo and hetero nuclear diatomic systems	4	Apply the concepts to predict the structure and shapes of molecules	Lecture and Group discussion	
	3	Bond length - bond order and bond energy - application to small molecules such as BeCl ₂ - BCl ₃ - CCl ₄ and SF ₄	3	Evaluate bond order and bond energy of small molecules	Lecture and Seminar	
	4	Ionic character in a covalent bond and concept of multicentre bonding. Pseudo halogens - structure and bonding in ClF ₃ - BrF ₃ - BrF ₅ - IF ₅ - IF ₇ etc	4	Analyse the types of bonding in pseudohalogens	Lecture	
	5	Oxides and oxyacids of halogens. Bonding in noble gas compounds - XeCl ₂ XeF ₄ - XeOF ₄ and XeF ₆	4	Analyse the bonding in noble gas compounds	Lecture with ppt	
II	Chemist	ry of Solid State I				
	1	Weak chemical forces - van der Waals forces and hydrogen bonding	3	Understand the weak chemical forces	Lecture	Evaluation through class test, online quiz and
	2	Close packing of atoms and ions - HCP and BCC - types of packing voids - radius ratio - derivation - its influence on structures	3	Analyse the types of packing of atoms and ions	Lecture with ppt	group discussion Formative assessment I

	3	Lattice energy - Born- Lande equation - Kapustinski equation and Madelung constant Representative structures of AB and AB ₂ types of compounds - rock salt - cesium chloride - wurtzite - zinc blende - rutile - fluorite - antifluorite - cadmium iodide and nickel arsenide	3	Understands lattice energy, Born- Lande equation and Kapustinski equation Analyse the types of bonding in AB and AB ₂ types of compounds	Lecture and group discussion Lecture	
	5	Structure of graphite and diamond. Spinels - norma and inverse types and perovskite structures.	4	Analyse the structure of graphite and diamond, normal and inverse types of spinels	Lecture with ppt	
III	Chemist	ry of Solid State II				
	1	Defects in crystal - line - plane defects - stoichiometry and non- stoichiometry defects	3	Analyse the types of defects in crystal	Lecture with ppt	Evaluation through class test, online quiz and
	2	Band theory of solids. Electrical properties of solids - conductor - insulator - semiconductor - intrinsic and extrinsic semiconductors. Optical properties - lasers and phosphors. Elementary study of liquid crystals	4	Evaluate the optical and electrical properties solids	Lecture	discussion Formative assessment II
	3	Difference between point group and space group - screw axis - glide plane - symmetry elements - relationship between molecular symmetry and crystallographic symmetry. Concept of reciprocal lattice	4	Understand the differences between point group and space group, molecular symmetry and concepts of reciprocal lattice	Lecture with models	

	4	X-ray diffraction by single crystal - rotating crystal and powder diffraction. Neutron diffraction - elementary treatment and comparison with X-ray diffraction Electron diffraction- basic principle. Crystal growth methods from melt and solution. Hydrothermal and gel methods	4	Compare X-ray diffraction and neutron diffraction Understand electron diffraction and apply crystal growth methods.	Lecture	
IV	Boron C	ompounds and Clusters		·	•	
	1	Chemistry of boron - preparation - properties and structure of boranes - higher boranes	4	Understand the structure and properties of boranes	Lecture	Evaluation through class test and group discussion
	2	Borazines - boron nitrides - hydroborate ions - STYX numbers - Wade's rules	4	Understand the structure of borazines, STYX numbers and wade rule	Lecture and group discussion	Formative assessment II
	3	Carboranes - types - preparation - properties and structure of nido – closo and arachno	3	Analyse the structure of carboranes	Lecture	
	4	Metallocarboranes - general study. Metal clusters - chemistry of low molecularity metal clusters	4	Understand the chemistry of low molecularity metal clusters	Lecture	
	5	Structure of Re ₂ Cl ₈ and multiple metal-metal bonds	3	Analyse the metal- metal bonds in Re ₂ Cl ₈	Lecture	
V	Inorgani	ic Chain and Cluster Comp	oounds			
	1	Types of inorganic polymers - comparison with organic polymers silanes - higher silanes - multiple bonded systems - silicon nitrides and siloxanes	5	Understand the types of inorganic polymer and organic polymer	Lecture	Evaluation through class test, group discussion and quiz Formative
	2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	4	Understand the structure of P-N and S-N compounds	Lecture	assessment II

3	Isopoly and heteropoly acids - structure and bonding of 6- and 12- isopoly and heteropoly anions	3	Analyse the structure and bonding in polyacids	Lecture	
4	Structure of silicates - applications of Paulings rule of electrovalence - isomorphous replacements in silicates - ortho - meta and pyro silicates	3	Apply Pauling's rule of electrovalence to structure of silicates	Lecture and Group Discussion	
5	One dimensional - two dimensional and three dimensional silicates	3	Understand one dimensional and two dimensional silicates	Lecture	

Course Instructor: Dr. S. Lizy Roselet

HOD: Dr. G. Leema Rose

Semester I Reaction Mechanism and Stereochemistry (Core II) Subject Code: PG2012

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To understand the fundamental mechanisms involved in electrophilic and nucleophilic reactions
- To familiarize the basic aspects of stereochemistry and conformation

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the basic concepts of reaction mechanisms, stereochemistry and conformation in organic compounds	PSO-1	U
CO-2	apply the reaction mechanism, stereochemistry and conformation for the synthesis of organic compounds	PSO-2	А
CO-3	analyse the types of reaction mechanisms involved in synthetic organic transformation.	PSO-2	Y
CO-4	create novel organic compounds	PSO-3,4	C

Course Outcomes (COs)

Unit I Reaction Mechanism and Reactive Intermediates

(18 Hours)

(18 Hours)

Reaction mechanism - energy diagram of simple organic reactions - transition state and intermediate. Kinetic and non-kinetic methods of determining organic reaction mechanisms. Isolation - trapping of intermediates and isotopic labeling studies. Primary kinetic isotopic effect. Correlation analysis - linear free energy relationships - Hammett equation - significances of σ and ρ - applications of Hammett equation. Taft equation and applications. Reactive intermediates - generation - stability and reactivity - carbocations carbanions - free radicals - carbenes - benzynes and nitrenes.

Unit II Aliphatic Nucleophilic Substitution

Mechanism of aliphatic nucleophlic substitution reaction - S_N^1 - S_N^2 and S_N^i mechanisms. Solvent and leaving group effects on aliphatic nucleophlic substitution reactions. Neighbouring group participation (NGP). Substitution at carbonyl - vinylic and bridgehead system. Substitution with ambident nucleophiles- "O" Vs "C"alkylation. Role of LDA - crown ethers and phase transfer catalysts (PTC) in nucleophilic substitution

reactions. Mechanism of ester hydrolysis (only $BAc^2 - AAc^2$ and AAl^1). Alkylation of active methylene compounds. Asymmetric alkylation - Evans - Enders and Meyers procedures. Preparation and synthetic utility of enamines - Finkelstein reaction and Wurtz coupling.

Unit III Aromatic Electrophilic and Nucleophilic Substitutions

(18 Hours)

Aromatic electrophilic substitution - mechanism of nitration - sulfonation - Friedel-Crafts alkylation and acylation reactions. Synthesis of di- and tri-substituted benzenes from benzene or mono-substituted benzenes. Haworth reaction for naphthalene - Scholl reaction -Vilsmeier-Haack formylation - Gattermann reaction - Reimer-Tiemann and Bischler-Napieralski reactions.

Aromatic nucleophilic substitution in aryl halides by Meisenheimer complex mechanism and benzyne mechanism. Reactions of aryldiazonium salts. Zeigler alkylation -Vicarious Nucleophlic Substitution (VNS) - Chichibabin and Schiemann reactions.

Unit IV Stereochemistry

(18 Hours)

Chirality - symmetry elements - asymmetric and dissymmetric chiral molecules. Relative and absolute nomenclature. Newman - Sawhorse - Fischer projections - their conversions. Axial chirality - planar chirality - helicity - allenes - spiranes - biphenyls - ansa compounds and trans-cycloalkenes. Stereochemistry of compounds containing nitrogen sulphur and phosphorus. Topicity - homotopic - enantiotopic and diastereotopic ligands groups and faces. Stereospecific and stereoselective synthesis. Asymmetric synthesis. Cram's rule - open chain - cyclic and dipolar model. Prelog's rule.

Unit V Conformational Analysis

(18 Hours)

Conformation - definition - differences between configuration and conformation. Conformation of simple acyclic systems. Effect of conformation on reactivity of acyclic system - cis- and trans- eliminations. Conformation of cyclic systems upto six membered rings. Conformation of mono and di-substituted - three - four - five and six membered ring systems. Effect of conformation on reactivity of cyclic systems - S_N^1 and S_N^2 reactions. Quantitative correlation between conformation and reactivity - Winstein-Eliel equation and Curtin-Hammet principle. Conformations of decalin - perhydrophenanthrene and perhydroanthracene.

Text books:

- 1. March, J. (2006). Advanced Organic Chemistry. (4th ed.). New York: John Wiley and Sons.
- 2. Sykes, P. (2003). A Guidebook to Mechanism in Organic Chemistry. (6th ed.). India: Pearson.

- 3. Norman, R.O.C. & Coxon, J.M. (1993). Principles of Organic Synthesis, (3rd ed.). New York: CRC press, Taylor and Francis Group.
- 4. Ahluwalia, V.K. & Parshar, R.K. (2010). Organic Reaction Mechanism. (4th ed.). India: Narosa publishing House, 2010.
- 5. Nasipuri, D. (2011). Stereochemistry of Organic Compounds Principles and Applications. (3rd ed.). India: New Age International, Ltd.
- 6. Kalsi, P.S. (2015). Stereo chemistry Conformation and Mechanism. (8th ed.). India: New Age International, Ltd.

Reference books:

- 1. Morrison, R.T. & Boyd, R.N. (1997). Organic Chemistry. (6th ed.). New Jersey: Prentice Hall.
- 2. Carey, F. & Sundberg, R.J. (2007). Advanced Organic Chemistry-Part A and B. (5thed.). USA: Springer.
- 3. Smith, M.B. & March, J. (2001). Advanced Organic Chemistry. (5thed.). New York: John Wiley and Sons.
- 4. Bansal, R.K. (2005). Reaction Mechanism in Organic Chemistry. (3rd ed.). Tata McGraw Hill.
- Clayden, J. Greeves, N& Warren, S. (2012). Organic Chemistry. (2nd ed.). Oxford University Press.
- Eliel, E.L. & Wilen, S.H. (2003). Stereochemistry of organic compounds. (1st ed.). New York: Wiley.

Teaching Module

Credit: 5

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			Hours	Outcome		Evaluation
Ι	Reaction	n Mechanism and Reactive	Intermedi	ates		
	1	Reaction mechanism - energy diagram of simple organic reactions - transition state and intermediate	4	Understand the basic concepts of reaction mechanisms in organic compounds	Lecture with ppt	Evaluation through online quiz Formative
	2	Kinetic and non-kinetic methods of determining organic reaction mechanisms. Isolation - trapping of intermediates and isotopic labelling studies	4	Compare Kinetic and non-kinetic methods of determining organic reaction mechanisms	Lecture and Group discussion	assessment I
	3	Primary kinetic isotopic effect. Correlation analysis - linear free energy relationships - Hammett equation - significances of σ and ρ - applications of Hammett equation	4	Interpret the reaction mechanisms using linear free energy relationship.	Lecture and Seminar	
	4	Taft equation and applications	2	Understand the principle and applications of Taft equation	Lecture	
	5	Reactive intermediates - generation - stability and reactivity- carbocation- carbanions - free radicals - carbenes - benzynes and nitrenes	4	Understand and analyze the generation, stability and reactivity of reaction intermediates	Lecture with ppt	
II	Aliphati	c Nucleophilic Substitution	l			
	1	Mechanism of aliphatic nucleophlic substitution reaction - S_N^1 - S_N^2 and S_N^i mechanisms. Solvent and leaving group effects on aliphatic nucleophlic substitution reactions	4	Identify S_N^1 , $\overline{S_N^2}$ and S_N^i mechanisms in organic reactions	Lecture with models	Evaluation through class test, online quiz and group discussion Formative

	2	Neighbouring group participation (NGP). Substitution at carbonyl - vinylic and bridgehead system. Substitution with ambident nucleophiles- "O" Vs "C"alkylation Role of LDA - crown ethers and phase transfer catalysts (PTC) in nucleophilic substitution reactions	5	Understand the concept of neighbouring group participation and substitution reactions Understand the role of LDA - crown ethers and phase transfer catalysts (PTC) in organic reactions	Lecture Lecture and group discussion	assessment I
	4	Mechanism of ester hydrolysis (only BAc ² - AAc ² and AAl ¹). Alkylation of active methylene compounds. Asymmetric alkylation - Evans - Enders and Meyers procedures. Preparation and synthetic utility of enamines - Finkelstein reaction and Wurtz coupling	5	Understand the reaction and mechanism of aliphatic nucleophlic substitution reactions	Lecture	
III	Aromati	c Electrophilic and Nucleo	philic Subs	titutions	·	
	1	Aromatic electrophilic substitution - mechanism of nitration - sulfonation - Friedel-Crafts alkylation and acylation reactions	4	Understand the mechanism of aromatic electrophilic substitution	Lecture with models	Evaluation through class test, online quiz and group discussion
	2	Synthesis of di- and tri- substituted benzenes from benzene or mono- substituted benzenes. Haworth reaction for naphthalene - Scholl reaction - Vilsmeier- Haack formylation	6	Synthesize benzene derivatives using aromatic electrophilic substitution reactions	Lecture	Formative assessment II
	3	Gattermann reaction - Reimer-Tiemann and Bischler-Napieralski reactions. Aromatic nucleophilic substitution in aryl halides by Meisenheimer complex mechanism and benzyne	5	Understand the mechanism of aromatic electrophilic and nucleophilic substitution reactions	Lecture and group discussion	

	1	Ponctions	2	Understand the	Locturo	
	4	Reactions of	5	understand the	Lecture	
		aryidiazonium saits.		mechanism of		
		Zeigler alkylation -		aromatic		
		Vicarious Nucleophlic		nucleophilic		
		Substitution (VNS) -		substitution		
		Chichibabin and		reactions)		
		Schiemann reactions		,		
IV	Stereoch	emistry				
1,	1	Chirality - symmetry	3	Understand the	Lecture	Evaluation
	1	elements asymmetric	5	concept of chirality	Lecture	through class
		elements - asymmetric		concept of chirality		through class
		and dissymmetric chiral				test and
		molecules				group
	2	Relative and absolute	1	Convert Newman	Lecture	discussion
	2	nomonoloturo Novimon	-	Southerse and	and group	
		nomenciature. Newman				Formative
		- Sawhorse - Fischer		Fischer projections	discussion	assessment II
		projections - their				
		conversions				
	3	Axial chirality - planar	4	Differentiate axial	Lecture	
		chirality - helicity -		and planar chirality		
		allenes - spiranes -				
		binhenvls - ansa				
		compounds and trans				
		cycloalkenes			-	
	4	Stereochemistry of	4	Understand the	Lecture	
		compounds containing		concept of topicity		
		nitrogen - sulphur and				
		phosphorus. Topicity -				
		homotopic - enantiotopic				
		and diastereotopic				
		ligands - groups and				
		faces				
	5	Storoosposific and	3	Illustrata	Locturo	
	5	Stereospecific and	5	inustrate	Lecture	
		stereoselective synthesis		asymmetric		
		Asymmetric synthesis.		synthesis using		
		Cram's rule - open		Cram's rule and		
		chain - cyclic and		prelog'srule		
		dipolar model. Prelog's				
		rule				
V	Conform	national Analysis	I		I	
	1	Conformation -	5	Understand the	Lecture	Evaluation
	T	definition differences	5	conformation of	with	through class
		hatman - unterences			with	the start start
		between configuration		simple acyclic	videos	test, group
		and conformation.		systems		discussion
		Conformation of simple				and quiz
		acyclic systems. Effect of				
		conformation on				Formative
		reactivity of acyclic				assessment I
		system - cis- and trans-				
		eliminations				

2	Conformation of cyclic systems upto six membered rings. Conformation of mono and di-substituted - three	5	Understand the conformation of cyclic systems	Lecture	
	- four - five and six membered ring systems				
3	Effect of conformation on reactivity of cyclic systems - S_N^1 and S_N^2 reactions	2	Evaluate the effect of conformation in cyclic system	Lecture	Evaluation through class test, group discussion
4	Quantitative correlation between conformation and reactivity - Winstein- Eliel equation and Curtin-Hammet principle	3	Correlate Winstein- Eliel equation and Curtin-Hammet principle	Lecture and Group Discussion	and quiz Formative assessment II
5	Conformations of decalin - perhydrophenanthrene and perhydroanthracene	3	Understand the conformation of bi- and tri-cyclic systems		

Course Instructor: Dr. Sheeba Daniel

HOD: Dr. G. Leema Rose

Semester I Chemical Kinetics and Electrochemistry (Core III) Subject Code: PG2013

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To understand the mechanism of kinetics and catalysis of chemical reactions
- To attain knowledge about the concepts of photochemistry and electrochemistry

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the concepts of chemical kinetics, catalysis, photochemistry and electrochemistry	PSO-1	U
CO-2	apply the mechanism of kinetics and catalysis to chemical reactions	PSO-2,3	А
CO-3	analyze the principles and applications of kinetics, catalysis, photochemistry and electrochemistry	PSO-2,3	Y
CO-4	evaluate the kinetics and mechanism of chemical reactions	PSO-4	Е

Unit I Chemical kinetics

(18 Hours)

Arrhenius equation - Simple collision theory - ARRT theory - statistical and thermodynamic treatments. Ionic reactions - primary and secondary salt effects. Derivation and significance of volume of activation.

Kinetic isotopic effect - Kinetics of unimolecular reaction - Lindemann-Hinshelwood and Rice-Ramsperger-Kassel Marcus. Fast reactions - general features - flow techniques relaxation theory and relaxation techniques (T-jump and p jump) - crossed molecular beam technique.

Unit II Catalysis

Homogenous Catalysis - General catalytic mechanism - equilibrium treatment and steady state treatment - general acid-base catalysis and determination of catalytic coefficient. Discussion of protolytic and prototropic mechanisms of acid catalysis. Bronsted relationships as linear free energy relationships. Acidity functions and correlation of mechanisms.

(18 Hours)

Heterogeneous Catalysis - physisorption and chemisorption - Langmuir adsorption isotherm - mechanism of surface reactions. Langmuir - Hinshelwood and Eley-Rideal mechanism. Absolute rate of surface reactions.

Unit III Photochemistry

Introduction to photochemistry - laws of photochemistry - quantum yield calculation. Physical properties of electronically excited molecules - excited state dipole moment - acidity constant and redoxpotential. Photophysical processes in electronically excited molecules -Jablonski diagram - intersystem crossing - internal conversion - fluorescence phosphorescence - delayed fluorescence and other deactivation processes.

Stern-Volmer equation and its application. Photosensitation and chemiluminescence. Chemical lasers - photoexplosion and dissociation laser - experimental techniques. Chemical actinometry and flash photolysis.

Unit IV Electrochemistry - I

Deviation from ideal behavior - ion-solvent and ion-ion interactions. Debye-Hückel-Bjerrum model - ion association and triple ion formations. Expression for the mean activity coefficient. Debye-Hückel limiting law and its applications - diverse ion effect. Van't Hoff factor and its relation to colligative properties. Debye-Hückel theory of strong electrolytes. Debye-Huckel length and potential around a central ion - interpretation. Transport of ions in solution - electrolytic conduction - Debye - Huckel-Onsager treatment of strong electrolytes ionic atmosphere and anomalous conductance of non-aqueous electrolytes.

Unit V Electrochemistry – II

Electrical double layer - electrocapillary phenomena - surfactants and Lipmann's equation. Electrokinetic phenomena - zeta potential and its applications. Structure of electrical double layer - Helmholtz-Perrin - Guoy-Chapmann and Stern models. Butler-Volmer equation for one electron transfer reaction - equilibrium and exchange current densities - symmetry factor and transfer coefficient. Cyclic voltammetry and stripping voltammetry - principle and instrumentation. Corrosion and passivation of metals - Pourbaix diagram - Evans diagram. Batteries and fuel cells. Ion selective electrodes.

Text books

- 1. Laidler, K.J. (1987). Chemical Kinetics. (3rded.). New York: Harper and Row.
- 2. Atkins, P. & Atkins, J.P. (2002). Physical Chemistry. (7thed.). USA: Oxford university press
- Puri, B.R., Sharma, L.R. & Pathania, M.S.(2016). Principles of Physical Chemistry. (47thed.). India: Vishal Publications.
- 4. G. W. Castellan, (2004). Physical Chemistry. (4th ed.). India: Narosa publishing House.

(18 Hours)

(18 Hours)

(18 Hours)

- 5. Turro, N.J. (1978). Modern Molecular Photochemistry. (1st ed.). California: Benjamin/Cummings, Menlo Park.
- 6. Glastone, S.A. (1969). Text Book of Physical Chemistry. (2nd ed.). London: Macmillan and Co Ltd.
- Hamann, C.H., Hamnett, A. & Vielstich, W. (2001). Electrochemistry. (4th ed.). New York: John Wiley and Sons.
- 8. Perez, N. (2016). Electrochemistry and Corrosion Science. New York: Springer.

Reference Books

- 1. Agarwal, G.L. (1990). Basic Chemical Kinetics. (1st ed.). India: Tata McGraw Hill.
- 2. Silbey, R.J., Alberty, R.A. & Bawendi, M.G. (2015). Physical Chemistry.(4th ed.).India: Wiley.
- 3. Barrow, G.M. (2018). Physical Chemistry. (6th ed.). Ney York: Tata McGraw Hill.
- 4. Rohatgi-Mukhergee, K.K. (1997). Fundamentals of Photochemistry. (3rd ed.). India: New Age International Ltd.
- 5. Holze, R. (2009). Experimental Electrochemistry. New York: John Wiley and Sons.
- 6. Rieger, P.H. (2010). Electrochemistry. (2nded.). New York: Chapmann and Hall.

Teaching Module

Credit: 5

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			Hours	Outcome		Evaluation
Ι	Chemica	ll kinetics				
	1	Arrhenius equation- Simple collision theory- ARRT theory-statistical and thermodynamic treatments	4	Gain knowledge about chemical kinetics	Lecture	Evaluation through class test and quiz Formative
	2	Ionic reactions - primary and secondary salt effects	3	Explain the principle of ionic reactions	Lecture	assessment I
	3	Derivation and significance of volume of activation	4	Know about the significance of volume of activation	Lecture and Seminar	
	4	Kinetic isotopic effect- Kinetics of unimolecular reaction-Lindemann- Hinshelwood and Rice- Ramsperger-Kassel Marcus	3	Understand the mechanism of unimolecular reaction	Lecture	
	5	Fast reactions- general features - flow techniques - relaxation theory and relaxation techniques (T-jump and p jump) - crossed molecular beam technique	4	Know about the general features of fast reactions	Lecture	
II	Catalysis	5				
	1	Homogenous Catalysis- General catalytic mechanism - equilibrium treatment and steady state treatment - general acid-base catalysis	4	Infer the catalytic mechanism of equilibrium	Lecture	Evaluation through class test, group discussion and online quiz
	2	Determination of catalytic co-efficient. Discussion of protolytic and prototropic mechanisms of acid catalysis	4	Compare protolytic and prototropic mechanisms	Lecture and group discussion	Formative assessment I

	3	Bronsted relationships as linear free energy relationships. Acidity functions and correlation of mechanisms Heterogeneous Catalysis –physisorption and chemisorption – Langmuir adsorption isotherm - mechanism of surface reactions	4	Correlate Bronsted and linear free energy relationships Differentiate homogeneous and heterogeneous catalysis	Lecture	
	5	and Eley-Rideal mechanism. Absolute rate of surface reactions	5	Hinshelwood and EleyRideal mechanism	Lecture	
III	Photoch	emistry				
	1	Introduction to photochemistry - laws of photochemistry, quantum yield calculation. Physical properties of electronically excited molecules.	5	Deduce photochemical relations	Lecture	Evaluation through class test and group discussion Formative
	2	Excited state dipolemoment, acidity constant and redox potential. Photophysical processes - electronically excited molecules	3	Understand excited state dipolemoment, acidity constant and redox potential	Lecture and seminar	assessment I
	3	Jablonski diagram, intersystem crossing, internal conversion, fluorescence, phosphorescence and other deactivation processes	2	Explain Jablonski diagram	Lecture and group discussion	
	4	Delayed fluorescence. Stern-Volmer equation and its application. Photosensitation and chemiluminescence. Chemical lasers	3	Derive Stern- Volmer equation	Lecture and seminar	
	5	Photoexplosion and dissociation laser - experimental techniques. Chemical actinometry and flash photolysis	5	Understand laser methods	Lecture	

IV	Electroc	hemistry – I				
	1	Deviation from ideal behavior - ion-solvent and ion-ion interactions. Debye-Hückel-Bjerrum model - ion association and triple ion formations. Expression for the mean activity coefficient	4	Understand the basic concepts of electrochemistry	Lecture	Evaluation through class test, group discussion and online quiz Formative
	2	Debye-Hückel limiting law and its applications - diverse ion effect. Van't Hoff factor and its relation to colligative properties	3	Derive Debye Huckel equation	Lecture and group discussion	assessment II
	3	Debye-Hückel theory of strong electrolytes. Debye-Huckel length and potential around a central ion - interpretation. Transport of ions in solution	4	Explain the principles and applications of Huckel theory	Lecture	
	4	Electrolytic conduction Debye - Huckel-Onsager treatment of strong electrolytes- ionic atmosphere	4	Apply Debye - Huckel-Onsager treatment to strong electrolytes	Lecture	
	5	Anomalous conductance of non-aqueous electrolytes	3	Gain knowledge about the non aqueous electrolytes	Lecture	
V	Electroc	hemistry – II				
	1	Electrical double layer - electrocapillary phenomena -surfactants and Lipmann's equation. Electrokinetic phenomena - zeta potential and its	4	Derive Lippmann equation	Lecture	Evaluation through class test, group discussion and quiz Formative
	2	applications Structure of electrical double layer - Helmholtz-Perrin - Guoy-Chapmann and Stern models. Butler- Volmer equation for one electron transfer reaction	4	Derive Butler- Volmer equation		assessment II
		equilibrium				

3	Exchange current densities- symmetry factor and transfer coefficient.Cyclic voltammetry and stripping voltammetry - principle and	4	Know about the Transfer coefficients	Lecture	
4	Corrosion and passivation of metals - Pourbaix diagram - Evans diagram.	3	Employ the methods of preventing corrosion	Lecture with videos	
5	Batteries and fuel cells. Ion selective electrodes	3	Employ the methods of the Construction of fuel cells	Lecture	

Course Instructor: Dr. M. Shirly Treasa

HOD: Dr. G. Leema Rose

Semester I Analytical Chemistry (Elective I)

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

Subject Code: PG2014

Objectives

- To attain the ability to identify the errors.
- To understand various analytical techniques.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the principle and instrumentation of various analytical techniques	PSO-1	U
CO-2	apply the principle of analytical techniques to predict the purity, stability and concentrations of compounds	PSO-2,4	A
CO-3	analyse chemical compound using various analytical techniques	PSO-2,3	Y
CO-4	evaluate the quality and quantity of chemical compounds	PSO-3	E

Unit I Error Analysis

(12 Hours)

Significant figures - rounding off the values - accuracy and precision. Errors - classification of errors. Expression and calculation of errors in different forms. Precision and accuracy with respect to random errors. Minimization of errors - calibration of apparatus - analysis of standard samples - running a blank determination and independent analysis. Confidence limits. Tests of significance - F-test - t-test - chi square test and annova. Correlation and regression analysis.

Unit II Chromatography

General principle - classification of chromatographic methods - nature of partition forces and chromatographic behaviour of solutes. Plate and rate theories. Normal and reversed phase liquid chromatography. Column chromatography - principle - experimental technique and applications. Gas chromatography - gas-solid and gas-liquid chromatography. Thin layer chromatography - ion exchange chromatography and high performance liquid chromatography.

(12 Hours)

Unit III Colorimetric and Spectrophotometric Analytical Techniques (12 Hours)

Colorimetry - fundamental laws - instrumentation and applications. Spectrophotometry - instrumentation and applications. Principle - instrumentation - applications of fluorimetry - phsophorimetry - flame photometry - nephelometry and turbidimetry. Turbidimetric titrations and applications.

Unit IV Thermoanalytical Techniques

Thermogravimetric analysis (TGA) - principle - instrumentation - factors affecting thermogram - decomposition of calcium oxalate monohydrate and copper sulphate pentahydrate. Differential thermal analysis (DTA) - principle - instrumentation and thermal behaviour of copper sulphate pentahydrate by DTA. Differential scanning calorimetry (DSC) - principle - instrumentation - phase transition studies by DSC. Thermometric titrations principle - working and applications.

Unit V Electroanalytical Techniques

Electrogravimetric analysis - theory - instrumentation and applications. Coulometric analysis - coulometric titrations and applications. Potentiostatic coulometry. Polarography - principle - current-voltage relationship - dropping mercury electrode (DME) - experimental assembly - polarogram - half-wave potential - Ilkovic equation - applications to qualitative and quantitative analysis. Concept of pulse polarography. Voltametry - principle - cyclic voltametry. Amperometric titrations - principle and applications.

Text Books:

- 1. Kaur, H. (2016). Instrumental Methods of Chemical Analysis. India: Pragati Prakashan Publishing Ltd.
- 2. Day, R.A. & Underwood, A.L. (1998). Quantitative Analysis. (6th ed.). India: Prentice Hall.
- 3. Chatwal, G.R. & Anand, S.K. (2002). Instrumental Methods of Chemical Analysis. (5th ed.). India: Himalaya Publishing House.

Reference Books:

- 1. Higson, S. (2003). Analytical Chemistry. (1sted.). USA: Oxford University Press.
- 2. Christian, G.D. (2007). Analytical Chemistry. (6th ed.). New York: John Wiley & Sons.
- 3. Skoog, D.A, Holler, F.J & Crouch, S.R (2007). Principles of Instrumental Analysis. (6thed.). Australia: Thompson Brooks/Cole.
- 4. Gopalan, R., Subramanian, P.S. & Rengarajan, K. (2003). Elements of Analytical Chemistry. (3rded.). New Delhi: Sultan Chand & Sons.

(12 Hours)

(12 Hours)

Teaching Module

C	redit: 3		*Total Hours: 60 (Incl. Seminar & Test)				
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/	
			Hours	Outcome		Evaluation	
Ι	Error A	nalysis					
	1	Significant figures -	2	Understand	Lecture and	Evaluation	
		rounding off the		accuracy and	group	through	
		values - accuracy and		precision	discussion	periodic test,	
		precision				class test,	
	2	Errors - classification	3	Classify and	Lecture and	online quiz	
		of errors. Expression		evaluate errors	Seminar	and problem	
		and calculation of		with accuracy and		solving	
		errors in different		precision		F	
		forms. Precision and				Formative	
		accuracy with respect				assessment I	
		to random errors					
	3	Minimization of errors	3	Analyze and	Seminar		
		- calibration of		minimize errors			
		apparatus - analysis of					
		standard samples -					
		running a blank					
		determination and					
		independent analysis					
	4	Confidence limits.	4	Calculate F-test,	Lecture and		
		Tests of significance -		t-test and chi	Seminar		
		F-test - t-test - chi		square test.			
		square test and		Evaluate			
		annova. Correlation		correlation and			
		and regression		regression			
		analysis		analysis			
11	Chroma	tography	2	TT 1 / 1/1	T		
	1	General principle -	2	Understand the	Lecture	Evaluation	
		classification of		principle and	with videos	through	
		chromatographic		classification of		periodic test,	
		methods - nature of		chromatography		class test,	
		partition forces and				online quiz	
		behaviour of solutos				discussion	
		Deliaviour of solutes			-	uiscussion	
	2	Plate and rate theories.	2	Understand the	Lecture	Formative	
		Normal and reversed		theories and	with videos	assessment I	
		phase liquid		concepts in liquid		assessment i	
		chromatography		chromatography		P 1 1	
	3	Column	2	Apply column	Seminar	Evaluation	
		chromatography -		chromatographic	and group	through	
		principle -		technique to	alscussion	periodic test,	

		experimental		separate chemical		class test,
		technique and		compounds		online quiz
		applications				and class
	4	Gas chromatography -	3	Apply gas and	Seminar	assignment
		gas-solid and gas-		thin layer	and group	
		liquid		chromatographic	discussion	Formative
		chromatography. Thin		techniques to		assessment II
		layer chromatography		separate chemical		
				compounds		
	5	Ion exchange	3	Identify the	Lecture	
		chromatography and		chemical	with videos	
		high performance		constituents		
		liquid chromatography		present in a		
				sample using		
				HPLC		
III	Colorim	etric and Spectrophoton	netric Anal	ytical Techniques	1	1
	1	Colorimetry -	2	Apply	Seminar	Evaluation
		fundamental laws,		colorimetry to	with ppt	through
		instrumentation and		determine the		periodic test,
		applications		concentration of		class testand
				unknown sample		group
	2	Drinsinle	2	Identify	Lesture and	discussion
	2	Principle,	3	identify	Lecture and	D
		instrumentation and		fluoroactive	semmar	Formative
		applications of		muorescent		assessment II
		and fluorimetry		materials		
	3	Principle	3	Understand the	Seminar	
	5	instrumentation and	5	principle and	and group	
		applications		applications of	discussion	
		of physications		physical one of the physical of	albeabbioli	
		flame photometry		and flame		
		J		photometry		
	4	Principle.	4	Differentiate	Lecture and	
		instrumentation and		nephelometry and	seminar	
		applications of		turbidimery.		
		nephelometry and		5		
		turbidimetry.		Understand the		
		Turbidimetric		applications of		
		titrations and		turbidimetric		
		applications		titrations		
IV	Thermos	analytical Techniques				
	1	Thermogravimetric	3	Analyze the	Lecture	Evaluation
		analysis (TGA) -		purity and	with videos	through
		principle and		thermal stability	and seminar	periodic test,
		instrumentation.		of compounds		class test,
		Factors affecting		using TGA		online quiz
		thermogram -				and class
		decomposition of				assignment
		calcium oxalate				

		monohydrate and				Formative
		copper sulphate				assessment II
		pentahydrate				
		- ·				
	2	Differential thermal	3	Understand DTA	Lecture	
	2	analysis (DTA) -	5	and analyse the	with videos	
		nringinlo and		thormal behaviour	and cominar	
		instrumentation		of compounds	and seminar	
		Thermal behaviour of		of compounds		
		I nermal benaviour of				
		copper sulphate				
		pentahydrate by DIA			•	
	3	Differential scanning	3	Apply DSC to	Lecture	
		calorimetry (DSC) -		detect the phase	with videos	
		principle and		transitions of	and seminar	
		instrumentation.		compounds		
		Phase transition				
		studies by DSC				
	4	Thermometric	3	Understand the	Lecture	
		titrations - principle,		principle and	with videos	
		working and		applications of	and seminar	
		applications		thermometric		
				titrations		
V	Electroa	nalvtical Techniques			I	I
	1	Electrogravimetric	2	Understand the	Lecture	Evaluation
	_	analysis - Theory.	_	applications of	with ppt and	through
		instrumentation and		electrogravimetric	seminar	periodic test.
		applications		analysis	Seminar	class test.
	2	Coulometric analysis -	3	Understand the	Lecture	group
	_	coulometric titrations	5	application of	with videos	discussion
		and applications		coulometry	and seminar	and online
		Potentiostaticcoulome		coulometry	und sommu	auiz
		try				1
	3	Polarography -	3	Understand the	Lecture	Formative
	5	principle - current-	5	principle of	with videos	assessment I
		voltage relationship -		principie of polarography	and seminar	
		dropping mercury		polarography	and seminar	
		alactroda (DME)				
		electiode (DIVIE) -				
		assembly -				
		polarogram - half-				
		wave potential and				
		likovic equation				

4	Polarography -	2	Apply	Seminar
	applications to		polarographic	and group
	qualitative and		techniques for	discussion
	quantitative analysis.		qualitative and	
	Concept of pulse		quantitative	
	polarography		analysis	
5	Voltametry - principle	2	Understand the	Lecture
	- cyclic voltametry.		principle of	with videos
	Amperometric		voltametry and	and seminar
	titrations - principle		amperometric	
	and applications		titrations	

Course Instructor: Dr. B.T Delma

HOD: Dr. G. Leema Rose

Semester II Coordination Chemistry (Core IV) Subject Code: PG2021

No. of hours per week	Credit	Total no. of hours	Marks
6	6	90	100

Objectives:

- To understand the thermodynamic and stereochemical aspects of complexes
- To learn about the various mechanisms of substitution and electron transfer reactions.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO	Cognitive
		Addressed	Level
CO-1	understand the various theories and reaction mechanisms	PSO-1	U
	related to coordination compounds		
CO-2	apply the theories and reaction mechanisms to determine the	PSO-2	А
	properties of complexes		
CO-3	analyze the reaction mechanism of coordination compounds	PSO-2,3	Y
CO-4	evaluate the magnetic and spectral properties of complexes	PSO-2,3	Е
CO-5	create novel complexes and catalyst	PSO-4,5	С

Unit I Stability of Complexes

(18 Hours)

Stability of complexes - factors affecting stability of complexes - thermodynamic aspects of complex formation - stepwise and overall formation constants - stability correlations - statistical factors and chelate effect. Determination of stability constant and composition of the complexes - spectrophotometric method - ion exchange method - polarographic method and continuous variation method (Job's method).

Stereochemical aspects - stereoisomerism in inorganic complexes - isomerism arising out of ligand distribution and ligand conformation. Chirality - nomenclature of chiral complexes - application of ORD and CD in the identification of complexes.

Unit II Metal Ligand Bonding

(18 Hours)

Crystal field theory - Splitting of d orbitals under various geometries - factors affecting splitting - CFSE - evidences for CFSE (structural and thermodynamic effects) - spectrochemical series - Jorgensen relation - site preferences - Jahn-Teller distortion - dynamic and static Jahn-Teller - Jahn-Teller effect and chelation. Application of CFT - magnetic properties - spectral properties and kinetic properties - limitations of CFT-evidences for M-L overlap.

Molecular Orbital Theory - energy level diagrams concept of weak and strong fields sigma and pi bonding - octahedral - square planar and tetrahedral complexes. Nephelauxetic effect. Magnetic properties of complexes. Comparison of CFT and MOT of bonding in octahedral complexes.

Unit III Electronic Spectra of Complexes

(18 Hours)

Spectroscopic term symbols for dⁿ ions - derivation of term symbols and ground state term symbol - Hund's rule - selection rules - breakdown of selection rules - spin orbit coupling - band intensities - weak and strong field limits - correlation diagram - energy level diagrams. Orgel diagram for weak field Oh and Td complexes - splitting of energy level due to Jahn-Teller distortion. Modified orgel diagram - limitations of orgel diagram. Tanabe-Sugano (T-S) diagrams - evaluation of Dq and B values for d²- d⁸ complexes charge transfer spectra. Complications in band classification between LF (d-d) and CT bands. Comparison between d-d bands and CT bands - numerical problems. Lanthanides and Actinides- spectral properties.

Unit IV Inorganic Reaction Mechanism

(18 Hours)

Electron transfer reactions - Inner sphere (ISET) and outer sphere (OSET) electron transfer processes. Reaction mechanism of coordination compounds - Types of ligand substitution reactions- mechanism- Dissociative mechanism (D) - Associative mechanism (A) interchange mechanism (I) - labile and inert complexes. Substitution reaction in octahedral complexes - general mechanism - general rate law for A - D and I - distinction between D – ID - IA pathways - replacement of coordinated water - mechanism of acid hydrolysis - base hydrolysis – DCB mechanism - direct and indirect evidences in favour of the mechanism. Ligand substitution reactions without cleavage of M-L Bond. Anation Reactions - substitution in square planar complexes - general mechanism - trans effect- influences of entering and leaving groups - application of trans effect – synthesis of isomers of Pt(II) complexes – theories of trans effect and cis-trans isomerisation reaction. Application of substitution reactions in the synthesis of platinum and cobalt complexes.

Unit V Catalysis

General principles of catalysis - basic reactions involved in the catalysis by organometallic compounds. Hydrogenation of olefins (Wilkinson's catalyst) - Hydro formylation of olefins using cobalt or rhodium catalysts (OXO process) - oxidation of olefins to aldehydes and ketones (wacker process) - Monsanto acetic acid synthesis from methanol. Cyclo oligomerisation of acetylene using Ni catalyst (Reppe's catalyst) - synthetic gasoline by using ZSM-5 catalyst (Fisher-Tropsch and mobil process) - polymerization of olefins (Zeigler-Natta Catalyst) - polymer bound catalyst.

Text Books:

- 1. Lee, J.D. (2008). Concise Inorganic Chemistry. (5th ed.). India: Wiley India.
- 2. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. (2011). Inorganic Chemistry: Principles of Structure and Reactivity. (4th ed.).India: Pearson Education.
- 3. Puri B.R., Sharma, L.R. & Kalia, K.C. (2012). Principles of Inorganic Chemistry. (4th ed.). India: Milestone publishers.
- 4. Malik, W.U., Tuli, G.D. & Madan, R.D. (2012). Selected topics Inorganic Chemistry. (5th ed.). New Delhi: S. Chand Company Ltd.

Reference Books:

- 1. Cotton, F.A. & Wilkinson, G. (1988). Advance Inorganic Chemistry. (2nd ed.). India: Wiley Eastern Private Ltd.
- 2. Miessler, G.L. (2004). Inorganic Chemistry. (3rd ed.), India: Pearson Education.
- Purcell, K.F. &Kotz, J.C. (2012). Inorganic Chemistry. (2nd ed.). India: Cengage Learning India Pvt. Ltd.
- 4. Kettle, S.F.A, (1996).Coordination Chemistry-Ari Approach. USA: Spectrum Academic publishers Oxford.
- 5. Mehrotra, R. C. & Singh, A. (2014). Organometallic Chemistry. (2nd ed.) New Delhi: New Age International Ltd.
- 6. Parkins, A. W. &Poller, R. C. (1987). An Introduction to Organometallic Chemistry. Chennai: Oxford University Press.

(18 Hours)

Teaching Module

Credit: 6

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
T	Stability	of Complexes	nours	Outcome		L'aluation
	1	Stability of complexes - factors affecting stability of complexes- thermodynamic aspects of complex formation	3	Understand the factors affecting the stability of complexes	Lecture and group discussion	Evaluation through class test, online quiz and group discussion
	2	Stepwise and overall formation constants - stability correlations - statistical factors and chelate effect	3	Apply the theories to determine stepwise and overall formation constants	Lecture	Formative assessment I
	3	Determination of stability constant and composition of the complexes - spectrophotometric method - ion exchange method - polarographic method and continuous variation method (Job's method)	5	Apply various methods to determine the stability constants of complexes	Lecture and Seminar	
	4	Stereochemical aspects - stereoisomerism in inorganic complexes - isomerism arising out of ligand distribution and ligand conformation	4	Understand the stereoisomerism in inorganic complexes	Lecture and group discussion	
	5	Chirality - nomenclature of chiral complexes - application of ORD and CD in the identification of complexes	3	Apply ORD and CD in the identification of complexes	Lecture and Seminar	
II	Metal Li	gand Bonding				
	1	Crystal field theory - Splitting of d orbitals under various geometries - factors affecting splitting - CFSE - evidences for CFSE (structural and thermodynamic effects)	4	Understand crystal field theory and splitting of d- orbitals under various geometries	Lecture with ppt	Evaluation through class test, online quiz and group discussion

	2 3	Spectrochemical series - Jorgensen relation - site preferences - Jahn-Teller distortion - dynamic and static Jahn-Teller- Jahn- Teller effect and chelation Application of CFT - magnetic properties - spectral properties and kinetic properties -	4	Analyse dynamic and static Jahn- Teller distortion Apply CFT to determine the magnetic, spectral and kinetic properties	Lecture and group discussion Lecture	Formative assessment I
	4	Imitations of CFT- evidences for M-L overlap. Molecular Orbital Theory - energy level diagrams concept of weak and strong fields - sigma and pi bonding - octahedral - square planar and tetrahedral complexes	4	kinetic properties of coordination compounds Apply Molecular Orbital Theory to octahedral,square planar and tetrahedral complexes	Lecture with ppt	
III	5 Electron	Magnetic properties of complexes. Comparison of CFT and MOT of bonding in octahedral complexes ic Spectra of Complexes	5	MOT of bonding in octahedral complexes	Lecture	
	1	Spectroscopic term symbols for d ⁿ ions - derivation of term symbols and ground state term symbol	3	Understand spectroscopic term symbols	Lecture	Evaluation through class test and group discussion
	2	Hund's rule - selection rules - breakdown of selection rules - spin orbit coupling - band intensities - weak and strong field limits - correlation diagram - energy level diagrams	4	Apply Hund's rule and selection rules to spin orbit coupling	Lecture and group discussion	Formative assessment II
	3	Orgel diagram for weak field Oh and Td complexes - splitting of energy level due to Jahn- Tellerdistortion. Modified orgel diagram - limitations of orgel diagram	4	Analyse splitting of energy level due to Jahn Teller distortion in weak O_h and T_d com-lexes using Orgel diagram	Lecture with ppt	
	4	Tanabe-Sugano (T-S)	4	Evaluate Dq and \mathbf{P} values for d^2	Lecture	

	5	Charge transfer spectra.	3	Evaluate the	Lecture	
		Complications in band		spectral		
		classification between LF		properties of		
		(d-d) and CT bands.		lanthanides and		
		Comparison between d-d		actinides		
		bands and CT bands -				
		numerical problems.				
		Lanthanides and Actinides-				
		spectral properties				
IV	Inorgan	c Reaction Mechanism		1	1	
	1	Electron transfer reactions	4	Understand the	Lecture	Evaluation
		- Inner sphere (ISET) and		reaction	with ppt	through class
		outer sphere (OSET)		mechanisms of		test, online
		electron transfer processes		electron transfer		quiz and
				processes		group
	2	Reaction mechanism of	3	Analyse the types	Lecture	discussion
	2	coordination compounds -	5	of substitution	and group	
		Types of ligand		mechanisms in	discussion	Formative
		substitution reactions-		coordination	uiseussion	assessment II
		mechanism-Dissociative		compounds		
		mechanism (D) -		compounds		
		A speciative mechanism				
		(Δ) interchange				
		mechanism (I) - labile and				
		inert complexes				
	3	Substitution reaction in	5	Understand the	Lecture	
	5	octabedral complexes -	5	mechanism of	Lecture	
		general mechanism -		substitution		
		general rate law for A - D		reaction in		
		and L_{-} distinction between		octabedral		
		D = ID - IA pathways -		complexes		
		replacement of coordinated		complexes		
		water mechanism of acid				
		hydrolysis base				
		hydrolysis - base				
		machanism direct and				
		indirect avidences in				
		fayour of the mechanism				
	1	Ligand substitution	3	Apply the	Lecture	
	4	reactions without cleavers	S	machanism of	with ppt	
		of MI Bond Anotion		substitution	with ppt	
		Departions substitution in		substitution		
		square planar complexes		planar complexes		
		square planar complexes -		planar complexes		
		general mechanism				
	~		2	4 1 55	T .	1
---	----------	---	---	--------------------	------------	---------------
	5	Trans effect- influences of	3	Apply Trans	Lecture	
		entering and leaving		effect and		
		groups - application of		substitution		
		trans effect – synthesis of $\mathbf{p}_{(\mathbf{I})}$		reactions to		
		isomers of Pi(II)		synthesise Pt and		
		trang affect and sig trang		Co complexes		
		isometication reaction				
		Application of substitution				
		reactions in the synthesis				
		of platinum and cobalt				
		complexes				
V	Catalysi	s				
•	1	General principles of	4	Understand the	Lecture	Evaluation
		catalysis - basic reactions		general principles		through class
		involved in the catalysis by		and basic		test, group
		organometallic compounds		reactions		discussion
				involved in the		and quiz
				catalysis by		1
				organometallic		Formative
				compounds		assessment II
	2	Hydrogenation of olefins	3	Understand the	Lecture	
		(Wilkinson's catalyst) -		mechanism of	with ppt	
		Hydro formylation of		hydrogenation		
		olefins using cobalt or		and		
		rhodium catalysts (OXO		hydroformylation		
		process)		of olefins using		
				Co or Rh		
				catalysts		
	3	Oxidation of olefins to	4	Apply Wackers	Lecture	
		aldehydes and ketones		process to the	and group	
		(wacker process) -		oxidation of	discussion	
		Monsanto acetic acid		olefins		
		synthesis from methanol				
	4	Cyclooligomerisation of	4	Apply Reppe's	Lecture	
		acetylene using Ni catalyst		catalyst ans		
		(Reppe's catalyst) -		ZSM-5 catalyst		
		synthetic gasoline by using		to the		
		ZSM-5 catalyst (Fisher-		cyclooligomerisat		
		Tropsch and mobil		10n of acetylene		
		process)		and synthetic		
	~		2	gasoline	T .	
	5	Polymerization of olefins	3	Create new	Lecture	
		(Zeigler-Natta Catalyst) -		polymer catalyst		
		polymer bound catalyst				
	1	1		1		

Semester II Reaction Mechanism and Molecular Rearrangements (Core V) Subject Code: PG2022

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To understand the mechanism of organic reactions.
- To get an in-depth knowledge on the various types of oxidation and reduction reactions along with their synthetic utility.

CO No.	Upon completion of this course, the students will be able to:	PSO	Cognitive				
		Addressed	Level				
CO-1	understand the mechanisms of organic reactions	PSO-1	U				
CO-2	apply the reaction mechanisms to synthesize organic compounds	PSO-2,3	А				
CO-3	analyze the type of reactions in organic compounds	PSO-2,3	Y				
CO-4	evaluate nucleophilic, electrophilic substitution and elimination reactions in aromatic and aliphatic compounds	PSO-2	E				
CO-5	create novel organic compounds	PSO-3,4	C				

Course Outcomes (COs)

Unit I Addition to Carbon-Carbon Multiple Bond

(18 Hours)

(18 Hours)

Electrophilic addition to carbon-carbon double and triple bonds. Nucleophilic addition to carbon-carbon multiple bonds. Mechanism and stereochemical factors in reactions - addition of hydrogen halides, hypohalous acids and hydroboration. Hydroxylation of olefinic double bonds - OsO₄ - KMnO₄ - Woodward and Prevost hydroxylation. Epoxidation using peracids - Sharpless epoxidation and ozonolysis.

Mechanism and applications of Michael addition - Robinson annulation sequence -Diels' Alder - Knoevenagal - Mannich - Stork-enamine - Grignard - Darzen's and Reformatsky reactions.

Unit II Addition to Carbon-Oxygen Multiple Bond

Nucleophilic addition to carbon-oxygen double bond - Mannich, benzoin - Darzen's glycidic ester - Stobbe and Knovenagel condensation reactions. Wittig - Wittig-Horner

olefination reactions. Reactions of sulphur and sulphoniumylides. Julia olefination and Peterson alkene synthesis. Asymmetric reduction of carbonyl functions (Corey's procedure).

Unit III Elimination Reactions

Elimination reactions - E_1 - E_2 - E_{1cb} and E_i elimination. Effect of solvent - substrate and leaving group in elimination reactions. Hofmann - Saytzeff and Bredt's rule. Saytzeff's Vs Hoffman elimination. Stereochemistry of E_2 elimination. Mechanism of pyrolytic elimination - Chugaev and Cope elimination reactions. Hoffmann exhaustive methylation and pyrolysis of esters.

Unit IV Molecular Rearrangments and Name Reactions(18 Hours)

Molecular rearrangements - classification - electrophilic - nucleophilic and free radical rearrangements. Mechanisms of Wagner Meerwin - Tiffenev-Demyanov - Dienone-Phenol - Favorskii - Fries - Baeyer-Villager - Stevens - Neber - Sommelet-Hauser - Baker-Venkatraman - von-Richter - Ullmann - Pummerer and di- π methane rearrangements.

Name reactions - Dieckmann cyclization - Hofmann-Loffler Freytag reaction - Mitsunobu reaction - Shapiro reaction - Eschenmoser-Tanabe and Ramburg-Backlund reactions.

Unit V Oxidation and Reduction Reactions

(18 Hours)

Oxidation with Cr - PCC - PDC and Jones. Oxidation with Mn - MnO₂ and BaMnO₄ reagents. Oxidation with LTA - DDQ and SeO₂. Oxidation using DMSO - DCC - acetic anhydride and oxaloyl chloride. Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent.

Reduction with NaBH4 - NaCNBH3 - Zn(BH4)2 - LiAlH4 - Li(BuO)3AlH - DIBAL-H -

Red-Al - Et₃SiH and Bu₃SnH. Reduction using selectrides - Birch reduction.

Text Books:

- 1. March, J. (2006). Advanced organic chemistry. (4th ed.).New York: John Wiley and Sons.
- Ahluwalia, V.K. & Parshar, R.K. (2005). Organic Reaction Mechanism. (2nd ed.). India: Narosa, publishing House.
- Norman, R.O.C. & Coxon, J.M. (1993). Principles of Organic Synthesis, (3rded.). New York: CRC press, Taylor and Francis Group.
- 4. Morrison, R.T. & Boyd, R.N. (1997). Organic Chemistry. (6th ed.). New Jersey: Prentice Hall.
- 5. Jain, M.K. & Sharma, S.C. (2014). Modern Principles of Organic Chemistry. India: Vishal publication.

(18 Hours)

6. Chatwal, G.R. (2016). Reaction Mechanism and Reagents in Organic Chemistry. (5th ed.). India: Himalaya Publishing House.

Reference books:

- 1. Carey, F. & Sundberg, R.J. (2007). Advanced Organic Chemistry-Part A and B. (5thed.). USA: Springer.
- 2. Smith, M.B. & March, J. (2001). Advanced Organic Chemistry. (5thed.). New York: John Wiley and Sons.
- 3. Bansal, R.K. (2005). Reaction Mechanism in Organic Chemistry. (3rd ed.). Tata McGraw Hill.
- 4. Clayden, J. Greeves, N & Warren, S. (2012). Organic Chemistry. (2nd Ed.). Oxford University Press.
- 5. Tewari, K.S., Vishnol, N.K. & Mehrotra, S.N. (2002). A text book of organic chemistry. India: Vikas publishing House Ltd.
- 6. Kalsi, P.S. (1996). Organic Reactions and Mechanism. (1st ed.). India: New Age International Ltd.

Cr	Credit: 5 *Total Hours: 90 (Incl. Seminar & Test)					
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
		-	Hours	Outcome		Evaluation
Ι	Unit I A	ddition to Carbon-Carbon	Multiple B	ond		
	1	Electrophilic addition to	4	Understand	Lecture	Evaluation
		carbon-carbon double		electrophilic		through
		and triple bonds.		addition and		online quiz
		Nucleophilic addition to		nucleophilic		Formative
		carbon-carbon multiple		addition to carbon-		assessment I
		bonds		carbon multiple		
				bonds		
	2	Mechanism and	4	Understand the	Lecture	
		stereochemical factors in		mechanisms	and Group	
		reactions - addition of		stereochemical	discussion	
		hydrogen halides,		factors in organic		
		hypohalous acids and		reactions		
		hydroboration			.	
	3	Hydroxylation of olefinic	3	Synthesize the	Lecture	
		double bonds - OsO_4 -		organic compounds	and	
		KMnO ₄ - Woodward and		using	Seminar	
		Prevost hydroxylation		nydroxylating		
	4		2	agents	T a star us	
	4	Epoxidation using	3	Enovidation	Lecture	
		enovidation and		reactions		
		ozonolysis		reactions		
	5	Machanism and	1	Apply the name	Locturo	
	5	and applications of Michael	4	reactions to	Lecture	
		addition – Robinson		synthesize organic		
		annulation sequence -		compounds		
		Diels' Alder -		compounds		
		Knoevenagal - Mannich -				
		Stork-enamine -				
		Grignard - Darzen's and				
		Reformatsky reactions				
II	Addition	to Carbon-Oxygen Multin	ole Bond			
	1	Nucleophilic addition to	5	Understand the	Lecture	Evaluation
		carbon-oxygen double		nucleophilic	with	through class
		bond - Mannich, benzoin		addition to carbon-	models	test, online
		- Darzen'sglycidic ester -		oxygen double		quiz and
		Stobbe and Knovenagel		bond		group
		condensation reactions				discussion

	2 3 4	Wittig - Wittig-Horner olefination reactions Reactions of sulphur and sulphoniumylides. Julia olefination and Peterson alkene synthesis Asymmetric reduction of carbonyl functions (Corey's procedure)	3 5 5	Infer the mechanism of Wittig - Wittig- Horner olefination reactions Know the reactions of sulphur and sulphoniumylides Illustrate asymmetric reduction of	Lecture and group discussion Lecture	Formative assessment I
TTT	A	a Flastrophilis and Nuclea	nhilia Cuha	carbonyl functions		
	Aromati 1	c Electrophilic and Nucleo Elimination reactions - $E_1 - E_2 - E_{1cb}$ and E_i elimination. Effect of solvent - substrate and leaving group in elimination reactions	philic Subs 5	titutions Understand the concept of elimination reaction	Lecture	Evaluation through class test, online quiz and group discussion
	2	Hofmann - Saytzeff and Bredt's rule. Saytzeff's Vs Hoffman elimination	4	Compare saytzeff's Vs Hoffman elimination	Lecture	assessment II
	3	Stereochemistry of E ₂ elimination. Mechanism of pyrolytic elimination - Chugaev and Cope elimination reactions	4	Infer the mechanism of pyrolytic elimination reaction.	Lecture and group discussion	
	4	Hoffmann exhaustive methylation and pyrolysis of esters	5	Understand the concept of Hoffmann exhaustive methylation	Lecture	
IV	Molecula	ar Rearrangements and Na	me Reaction	ons	Γ	T
	1	Molecular rearrangements - classification - electrophilic - nucleophilic and free radical rearrangements	4	Classify molecular rearrangements	Lecture	Evaluation through class test and group discussion
	2	Mechanisms of Wagner Meerwin - Tiffenev- Demyanov - Dienone- Phenol - Favorskii - Fries - Baeyer-Villager - Stevens and Neber rearrangements	5	Infer the mechanism of molecular rearrangements	Lecture and group discussion	Formative assessment II

	3	Sommelet-Hauser -	5	Infer the	Lecture	
	_	Baker-Venkatraman -	_	mechanism of		
		von-Richter - Ullmann -		rearrangements		
		Pummerer and di- π		e		
		methane rearrangements				
	4	Name reactions -	4	Understand the	Lecture	
		Dieckmann cyclization -		mechanism of		
		Hofmann-Loffler Freytag		name reactions		
		reaction - Mitsunobu				
		reaction - Shapiro				
		reaction - Eschenmoser-				
		Tanabe and Ramburg-				
		Backlund reactions				
V	Oxidatio	n and Reduction Reaction	S		L	
	1	Ovidation with Cr. PCC	5	Understand and	Loctura	Evolution
	1	PDC and Jones	5	onderstand and	Lecture	through class
		- FDC and Jones.		appry oxidising	with	tost group
		MnO ₂ and RoMnO ₄		agents in organic	videos	discussion
		reagents		synthesis		and auiz
	2	Ovidation with LTA	4	I In danatan d tha	Lastures	and quiz
	2	DDO and SoO	4	Understand the	Lecture	Formative
		DDQ and SeO_2		application of LTA		assessment I
	2	Ovidation using DMSO	4	- DDQ and SeO ₂	Lastures	Evolution
	3	Oxidation using DMSO -	4	Understand the	Lecture	Evaluation
		DCC - acetic annyoride		application of		through class
		and oxaloyl chloride		DMISO - DCC -		test, group
				acetic annyariae		discussion
				and oxaloyl		and quiz
	4	Oridation using IDV and	5		Lecture	Formative
	4	Oxidation using IBX and	5	Apply oxidising	Lecture	Formative
		Dess-Martin Periodinane		agents in organic	and Group	assessment II
		(DMP) reagent		synthesis	Discussion	

Course Instructor: Dr. Y. Christabel Shaji

HOD: Dr. G. Leema Rose

Semester II Quantum Chemistry and Spectroscopy (Core VI) Subject Code: PG2023

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To learn the principle of quantum mechanics of simple systems.
- To understand the principle, instrumentation, interpretation and applications of various spectroscopic and analytical techniques.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the concepts of quantum chemistry, spectroscopy and surface chemistry	PSO-1	U
CO-2	apply the principles of quantum mechanics to simple systems, spectroscopy to characterize compounds and surface chemistry to determine the surface area of surface films and liquids	PSO-2	A
CO-3	analyse molecules using quantum mechanics and spectroscopic techniques	PSO-2,3	Y
CO-4	evaluate eigen values, bond angles, electron density and surface area of simple molecules	PSO-2,3	E

Unit I Quantum Chemistry-I

Black body radiation - Planck's quantum theory - wave particle duality - uncertainty principle. Operators - linear - commutation - Hermitian and Hamiltonian operators. Eigen functions and eigen values. Postulates of quantum mechanics. Derivation of Schrodinger's time-independent wave equation - application - one dimensional box - particle in a three dimensional box - harmonic oscillator and hydrogen atom.

Unit II Quantum Chemistry - II

Born-Oppenheimer approximation - Hydrogen molecule ion. LCAO-MO and VB treatments of the hydrogen molecule. Anti-symmetry and Pauli's exclusion principle. Slater detrimental wave function - term symbols and spectroscopic states - Russell Saunders coupling. The variation theorem and perturbation theory - applications of variation method and perturbation theory to the helium atom. Hybridization-determination of bond angles of sp

(18 Hours)

(18 Hours)

sp² and sp³ hybridizations. Huckel pi electron (HMO) theory and its applications to ethylene
butadiene and benzene.

Unit III Molecular Spectroscopy - I

Electronic Spectroscopy - principle - laws of light absorption - Born-Oppenheimer approximation. Franck-Condon principle - wave-mechanical formulation - dissociation energy - dissociation products and predissociation. Microwave spectroscopy - rotation of molecules - rotational spectra of diatomic molecules - intensity of spectral lines - effects of isotopic substitution - non-rigid rotator. Rotational spectra of polyatomic molecules chemical analysis by microwave spectroscopy.

Unit IV Molecular Spectroscopy - II

ESR - theory - hyperfine interactions in ESR - double resonance (ENDOR, ELDOR) - Mc Connell's relation - verification of the relation for cyclic polyene radical - calculation of electron density and experimental techniques.

Laser Raman Spectroscopy - Einstein treatment of absorption and emission phenomena-Einstein's coefficients - probability of induced emission - applications to lasers- conditions for laser action - properties - types of lasers - advantages of lasers in Raman spectroscopy and experimental techniques.

Unit V Surface chemistry

Electrical aspects of surface chemistry - electrical double layer - zeta potential. BET and Gibbs adsorption isotherms - derivation – applications - determination of surface area (BET equation) - surface films and liquids. Membrane equilibria and dialysis.

Surface active reagents - classification of surface agents - micellization - hydrophilic interactions - critical micellar concentration - factors affecting the CMC of surfaces. Transition state theory of surface reactions - rates of chemisorptions - Hertz-Knudson equation.

Text Books:

- 1. Chandra. A.K. (2001). Introductory Quantum Chemistry. (4thed.). India: Tata McGraw-Hill.
- 2. Prasad, R.K. (2014). Quantum Chemistry. (4th ed.). New Delhi: New Age International Publishers.
- 3. Atkins, P. & Atkins, J.P. (2002). Physical Chemistry. (7thed.).USA: Oxford university press.
- 4. BanWell, C.N. & Mccash, E.M. (1997). Fundamentals of Molecular Spectroscopy. New Delhi: Tata Mc Grow Hill.

(18 Hours)

(18 Hours)

(18 Hours)

Reference Books:

- 1. Mcquarrie, D.A. (2008). Quantum Chemistry. Sausalito: University Science Books.
- 2. Puri, B.R., Sharma, L.R. & Pathania, M.S. (2016). Principles of Physical Chemistry (47thed.). India: Vishal Publications.
- 3. Aruldhas, G. (2011). Molecular Structure and Spectroscopy. (2nd ed.), India: PHI Learning Pvt. Ltd.

Credit: 5

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
-	0		Hours	Outcome		Evaluation
1	Quantur	n Chemistry-I			-	
	1	Black body radiation- Planck's quantum theory- wave particle duality- uncertainty principle	4	Explain the principle of black body radiation	Lecture	Evaluation through class test and quiz
	2	Operators-linear - commutation - Hermitian and Hamiltonian operators	3	Gain knowledge about operators	Lecture	assessment I
	3	Eigen functions and eigen values. Postulates of quantum mechanics	3	Understand the postulates of quantum mechanics	Lecture and Seminar	
	4	Derivation of Schrodinger's time- independent wave equation	3	Derive Schrodinger's wave equation	Lecture	
	5	Application - one dimensional box - particle in a three dimensional box - harmonic oscillator and hydrogen atom	5	Apply Schrodinger's wave equation to hydrogen atom	Lecture	
II	Quantur	n Chemistry - II	1			
	1	Born-Oppenheimer approximation-Hydrogen molecule ion. LCAO- MO and VB treatments of the hydrogen molecule	4	Compare LCAO- MO and VB treatments of the hydrogen molecule	Lecture	Evaluation through class test, group discussion and online
	2	Anti-symmetry and Pauli's exclusion principle. Slater detrimental wave function	4	ApplySlaterdeterminanttoconstructanti-symmetricwavefunction	Lecture and group discussion	quiz Formative assessment I
	3	Termsymbolsandspectroscopicstates-RussellSaunderscoupling	4	Gain knowledge about term symbols	Lecture	

	4	The variation theorem and perturbation theory - applications of variation method and perturbation theory to the helium atom. Hybridization- determination of bond angles of sp - sp ² and sp ³ hybridizations.Huckel	3	Apply variation method and perturbation theory to the helium atom Determine hybridization and bond angles	Lecture	
		pi electron (HMO) theory and its applications to ethylene - butadiene and benzene				
III	Molecula	ar Spectroscopy – I			L	
	1	Electronic Spectroscopy - principle - laws of light absorption - Born- Oppenheimer approximation	4	Understand the principle of electronic spectroscopy	Lecture	Evaluation through class test and group discussion
	2	Franck-Condon principle - wave-mechanical formulation - dissociation energy - dissociation products and predissociation	4	Apply Franck- Condon principle to dissociation.	Lecture and seminar	Formative assessment II
	3	Microwave spectroscopy - rotation of molecules - rotational spectra of diatomic molecules	3	Gain knowledge about microwave spectroscopy	Lecture and group discussion	
	4	Intensity of spectral lines - effects of isotopic substitution - non-rigid rotator	4	Know about the effects of isotopic substitution.	Lecture	
	5	Rotational spectra of polyatomic molecules - chemical analysis by microwave spectroscopy	3	Apply the principle of microwave spectroscopy in chemical analysis	Lecture and seminar	
IV	Molecula	ar Spectroscopy – II		I	ſ	
	1	ESR - theory - hyperfine interactions in ESR - double resonance (ENDOR, ELDOR)	4	Know about hyperfine interactions in ESR	Lecture	Evaluation through class test, group discussion
	2	Mc Connell's relation - verification of the relation for cyclic polyene radical	3	Verify Mc Connell's relation for cyclic polyene radical	Lecture and group discussion	and online quiz Formative

	3	Calculation of electron density and experimental techniques in solution Laser Raman Spectroscopy - Einstein treatment of absorption and emission phenomena- Einstein's	3	Calculate electron density Derive Einstein coefficient	Lecture	assessment II
	5	coefficients - probability of induced emission - applications to lasers Conditions for laser action - properties types of lasers - advantages of lasers in Raman spectroscopy and experimental techniques	4	Understand different types of lasers	Lecture	
V	Surface	chemistry				
	1	Electrical aspects of surface chemistry - electrical double layer - zeta potential.	4	Understand the concepts of surface chemistry	Lecture	Evaluation through class test, group discussion
	2	BET and Gibbs adsorption isotherms - derivation	3	Compare BET and Gibbs adsorption isotherms		and quiz Formative assessment II
	3	Applications - determination of surface area (BET equation) - surface films and liquids. Membrane equilibria and dialysis	4	Apply BET equation in determination of surface area	Lecture	
	4	Surface active reagents - classification of surface agents - micellization - hydrophilic interactions - critical micellar concentration - factors affecting the CMC of surfaces	4	Gain knowledge about CMC	Lecture with videos	
	5	Transition state theory of surface reactions - rates of chemisorptions - Hertz-Knudson equation	3	Derive Hertz- Knudson equation	Lecture	

Course Instructor: Dr. M. Shirley Treasa

Semester II Research Methodology (Elective II) Subject Code: PG2024

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

Objectives

- To understand the importance of research for future development.
- To get information about computation techniques in research

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the sources of literature survey and analytical techniques for documentation of research and cheminformatics for molecular representation	PSO-1	U
CO-2	apply the features of literature survey in research and analytical techniques to characterize compounds	PSO-2,3	А
CO-3	analyse the sources of research information and chemical compounds	PSO-2,3	Y
CO-4	evaluate the results using analytical techniques	PSO-2,3	E
CO-5	create a journal article	PSO-3	С

Unit I Literature Survey

Source of chemical information - primary - secondary and tertiary sources. Literature survey - indexes and abstracts in science and technology. Applied science and technology index - chemical abstracts - chemical titles - current chemical reactions - current contents and science citation index. Classical and comprehensive reference works in chemistry-synthetic methods and techniques - treatises - reviews - patents and monographs.

Unit II Chemical Abstracts

Current awareness searching - CA weekly issues and CA issue indexes. Retrospective searching - CA volume indexes- general subject index - chemical substance index- formula index - index of ring systems - author index and patent index. CA collective indexes - collective index (CI) and decennial index (DI). Access points for searching CA indexes- index guide - general subject - terms - chemical substance names - molecular formulas - ring

(12 Hours)

(12 Hours)

systems - author names - patent numbers. Locating the reference - finding the abstract - finding the original document chemical abstract and service source index.

Unit III Research Problem and Scientific Writing

Identification of research problem - assessing the status of the problem - guidance from the supervisor - actual investigation and analysis of experimental results - conclusions. Scientific writing - research reports - thesis - journal articles and books. Steps to publishing a scientific article in a journal. Types of publications - communications - articles and reviews. Documenting - Abstracts indicative - descriptive abstracts - informative abstract - footnotes end notes - referencing styles - bibliography - journal abbreviations - abbreviation used in scientific writing.

Unit IV Instrumental Analysis

Principle - instrumentation and applications - AFM - SEM - STM - TEM and XRD. Determination of surface morphology and particle size. Sample preparations and applications of UV - IR - NMR and mass spectroscopy.

Unit V Cheminformatics

(12 Hours)

(12 Hours)

Cheminformatics - history and applications. Representing molecules - connection tables and line notation - Inchi - SMILES and WLN canonicalization. Line notation versus connection tables. Query languages - SMARTS. Molecular similarity. 2D topology and 3D configuration. Chemistry softwares - Chemdraw - writing chemical equations and schemes - editing - transporting picture to word and image document. Origin -importing and exporting data - scientific graphing and data analysis - curve fitting and peak analysis - transporting graph to tag image file format.

Text Books:

- Berg, B.L. (2009). Qualitative Research Methods for the Social Sciences. (7th ed.). India: Pearson Education.
- 2. Patton, M.Q. (2002). Qualitative research and evaluation methods. (3rd ed.). India: Sage Publications.
- 3. Alexis, L. & Mathews, L. (1999). Fundamentals of Information Technology. Chennai: Leon Vikas.
- 4. Mohan, J. (2001). Organic Spectroscopy Principles and Applications. India: Narosa publishing house.
- 5. Kemp, W. (1994). Organic Spectroscopy. (3rd ed.). New York: Macmillan.
- 6. Polanski, J. (2009). Cheminformatics. Poland: Elsevier Publications.

(12 Hours)

Reference Books:

- 1. Silverman, D. (2011). Qualitative Research: Issues of Theory, Method and Practice. (3rd ed.). India: Sage Publications.
- 2. Marczyk, G. Dematteo, D. & Festinger, D. (2005). Essential of Research Design and Methodology. New York: John Wiley and Sons.
- 3. Silverstein, S.M., Bassler, G.V. & Morril, T.C. (2004). Spectrometric identification of organic compounds. (6th ed.). New York: Wiley.
- 4. Dyer, J.R. (1987). Applications of Absorption spectroscopy of Organic Compounds. New York: Prientice Hall.
- 5. Dani, V.R. (1995). Organic spectroscopy. India: Tata McGraw Hill.
- 6. Gasteiger, J. & Engel, T. (2003). Chemoinformatics. New York: John Wiley and Sons.

Credit: 3

*Total Hours: 60 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning Outcome	Pedagogy	Assessment/
T	T • 4	9	Hours			Evaluation
1	Literatu	re Survey	2		T /	
	1	Source of chemical	2	Understand and	Lecture	Evaluation
		information - primary -		identify the sources	and group	through
		secondary and tertiary		of information's	discussion	periodic test,
		sources	2		T (class test and
	2	Literature survey -	2	Apply the features of	Lecture	group
		indexes and abstracts in		Interature survey in	and	discussion
		science and technology		research	seminar	andeassion
	3	Applied science and	3	Understand the	Lecture	Formative
		technology index -		terms chemical	with group	assessment I
		chemical abstracts -		abstracts and citation	discussion	
		chemical titles - current		index	and	
		chemical reactions -			seminar	
		current contents and				
		science citation index				
	4	Classical and	2	Understand classical	Lecture	
		comprehensive		and comprehensive	and	
		reference works in		reference works in	seminar	
		chemistry-synthetic		chemistry		
		methods and techniques				
	5	Treatises - reviews -	3	Understand patents	Lecture	
		patents and monographs		and monographs	with	
					videos	
11	Chemica	l Abstracts			-	
	1	Current awareness	2	Understand the	Lecture	Evaluation
		searching - CA weekly		importance of	and .	through
		1ssues and CA issue		current awareness	seminar	periodic test,
		indexes. Retrospective		and retrospective		class test,
		searching - CA volume		searching in research		online quiz
		muexes and general				and class
	2	Chamical substance	2	Analyzovarious	Locturo	assignment
	2	index formula index	2	indexes in chemical	and	ussignment
		index of ring systems -		abstracts	seminar	
		author index and patent		dostracts	semmai	
		index				Formative
	3	CA collective indexes	2	Differentiate CI and	Lecture	assessment II
	5	collective index (CI)	2	DI	and	
		and decennial index		~	seminar	
		(DI)				

	4	Access points for	3	Know how to search	Lecture	
		searching CA indexes-		CA indexes	and	
		index guide - general			seminar	
		subject - terms -				
		chemical substance				
		names - molecular				
		formulas - ring systems				
		- author names and				
		patent numbers				
	5	Locating the reference -	3	Pinpoint chemical	Lecture	•
		finding the abstract -	_	abstract and service	and	
		finding the original		source index	seminar	
		document chemical				
		abstract and service				
		source index				
III	Researc	h Problem and Scientific	Writing		1	
	1	Identification of	3	Identify and solve	Lecture	Evaluation
		research problem -		research problems	with	through
		assessing the status of		1	videos and	periodic test
		the problem, guidance			group	
		from the supervisor,			discussion	class test and
		actual investigation and				group
		analysis of				discussionFor
		experimental results				mative
		and conclusions				assessment II
	2	Scientific writing -	2	Know the art of	Lecture	
		research reports, thesis,		scientific writing in	with ppt	
		journal articles and		research	and	
		books			seminar	
	3	Steps to publishing a	3	Create journal	Lecture	
		scientific article in a		articles,	and group	
		journal. Types of		communication and	discussion	
		publications -		reviews		
		communications,				
		articles and reviews				
	4	Documenting -	2	Analyze descriptive	Lecture	
		Abstracts indicative -		and informative	and	
		descriptive abstracts		abstracts	seminar	
		and informative				
		abstracts				
	5	Documenting -	2	Identifythe format	Lecture	
		footnotes, end notes,		for documentation of	with ppt	
		referencing		research		
		styles, bibliography,				
		journal abbreviations,				
		abbreviation used in				
		scientific writing				
			1			1

IV	Instrumental Analysis							
	1	Principle, instrumentation and applications of AFM - SEM and STM	4	Understandthe principle and applications of AFM, SEM andSTM	Lecture with videos	Evaluation through periodic test, class test.		
	2	Principle, instrumentation and applications of TEM and XRD	2	Understandthe principle and applications of TEM and XRD	Lecture with videos	online quiz and group discussion Formative assessment I		
	3	Determination of surface morphology and particle size	2	Determine the surface morphology and particle size of compounds	Seminar and group discussion	Evaluation through periodic test, class test,		
	4	Sample preparations and applications of UV and IR spectroscopy	2	Apply UV and IR spectroscopy for structural elucidation of compounds	Lecture with ppt and videos	and class assignment Formative		
	5	Sample preparations and applications of NMR and mass spectroscopy	5	Apply NMR and mass spectroscopy for structural elucidation of compounds	Seminar	assessment II		
V	Cheminf	ormatics		·	·			
	1	Cheminformatics - history and applications. Representing molecules - line notation - Inchi - SMILES and WLN canonicalization	2	Understand cheminformatics and line notations	Lecture with ppt	Evaluation through periodic test, class test and online quiz and problem		
	2	Connection table and line notation versus connection table. SMARTS	2	Relate line notation and connection tables. Know about the query language SMARTS	Lecture with ppt	solving Formative assessment I		
	3	Molecular similarity - 2D topology and 3D configuration	2	Understand the importance of molecular similarity, 2D topology and 3D configuration in cheminformatics	Lecture			

4	Chemistry softwares - Chemdraw - writing chemical equations and schemes - editing - transporting picture to word and image	3	Apply Chemdraw software to draw chemical equations and schemes	Lecture with demo using Chemdraw software	
5	Origin -importing and exporting data - scientific graphing and data analysis - curve fitting and peak analysis - transporting graph to tag image file format	3	Apply Origin software to sketch graph and data analysis	Lecture with demo using Origin software	

Course Instructor: Dr. Sheeba Daniel

HOD: Dr. G. Leema Rose

Semester III Organic Spectroscopy (Core VII) Course Code: PG2031

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives

- To understand the principle and applications of UV, IR, NMR and Mass spectroscopictechniques.
- To elucidate the structure of simple organic compounds using spectral data.

CO	Upon completion of this course, the students will be able	PSO	CL			
	to:	Addressed				
CO-1	understand the principle and applications of various	PSO-1	U			
	spectroscopic techniques					
CO-2	apply the spectroscopic concepts to determine the structure	PSO-2,3	A			
	of organic compounds					
CO-3	analyze the functional groups, molecular formula, structure	PSO-2,3	Y			
	and spectral data of compounds					
CO-4	evaluate the purity, structure and molecular mass of	PSO-2,3	E			
	compounds using various spectroscopic methods					
CO-5	create and characterize novel organic compounds	PSO-3,4	С			
			1			

Course Outcomes (COs)

Unit I

UV-Visible and IR spectroscopy

UV-Visible spectroscopy: principle - types of electronic excitations - chromophore - auxochrome - bathochromic - hypsochromic - hypochromic and hyperchromic shifts. Woodward-Fieser rules to calculate λ_{max} values of conjugated dienes - α,β -unsaturated carbonyl compounds and aromatic compounds. Fieser-Khun rule. Effect of solvent polarity on λ_{max} .

IR spectroscopy: principle - Hooke's law - types of molecular vibrations. Factors influencing the vibrational frequency. Identification of functional groups in organic compounds. Finger print region. Fermi resonance - overtones and combination bands.

Unit II

¹H NMR Spectroscopy

¹H NMR Spectroscopy: principle - instrumentation - shielding and deshielding. Chemical shift - factors affecting chemical shift - electronegativity - hybridization - hydrogen bonding - anisotropic effect - double bond - triple bond - aromatic compounds - carbonyl compounds and annulenes. Spin-spin splitting pattern of simple organic compounds. Types of coupling - germinal - vicinal - long range and through space coupling. Karplus equation. Coupling

(18 Hours)

(18 Hours)

constant - AB, AB₂ and A₂B₃. Simplification of complex spectra - chemical exchange, double resonance and NMR shift reagents. Temperature dependent NMR.

Unit III

¹³C, ¹⁹F and ³¹P NMR Spectroscopy

¹³C NMR spectroscopy: principle - comparison of ¹³ C NMR and ¹H NMR. Chemical shift - factors affecting chemical shift. Homo nuclear and heteronuclear coupling. Broad band decoupling and OFF - resonance decoupling. Distortionless Enhancement by Polarization Transfer (DEPT) spectrum - DEPT-45 - DEPT-90 and DEPT-135. 2D Correlation spectroscopy (COSY) - HOMCORR - ¹H-¹H and ¹³C-¹³C connectivity. HETCORR - ¹H-¹³C connectivity and MRI.

¹⁹F NMR spectroscopy: precessional frequency and heteronuclear coupling. Identification of organofluoro compounds CF₃CO₂Et and CF₃CH₂OH.

³¹P NMR spectroscopy: chemical shift - heteronuclear coupling and P-P bond in NMR. Identification of organophosphorous compounds (Me)₃P - (EtO)₃P=O and Ph₃P.

Unit IV

Mass Spectrometry: principle - production of ions - Electronic Ionization (EI), Chemical Ionization (CI) and Fast Atom Bombardment (FAB). Molecular ion peak - base peak - meta stable peak and isotopic peaks. Nitrogen rule. McLafferty rearrangement and Retro Diels Alder reaction. General modes of fragmentation. Fragmentation pattern of simple organic compounds - alkenes - alkyl and aryl halides - alkylbenzene - benzene - aliphatic alcohols - phenols - aliphatic and aromatic acids - ketones - aldehydes - furan - pyrrole and pyridine.

Unit V

Structural Elucidation using Analytical and Spectral Data: Determination of molecular formula of organic compounds using elemental (CHN) analysis data. Structural determination of simple organic compounds using UV - IR - NMR and Mass spectral data.

Text Books

- 1. Mohan, J. (2001). Organic Spectroscopy Principles and applications. India: Narosa publishing house.
- 2. Kemp, W. (1991). Organic Spectroscopy. (3rd ed.). New York: Macmillan.
- 3. Kalsi, P.S. (2004). Spectroscopy of Organic Compounds. (6th ed.). India: New Age International Ltd.
- Silverstein, S.M., Bassler, G.V. & Morril, T.C. (2004). Spectrometric identification of organic compounds. (6th ed.). New York: Wiley.

Reference Books

- 1. Dyer, J.R. (1987). Applications of Absorption spectroscopy of Organic Compounds. New York: Prientice Hall.
- 2. Dani, V.R. (1995). Organic spectroscopy, India: Tata McGraw Hill.
- 3. Pavia, D.L., Lampman, G.M.,Kriz, G.S. & Vyvyan, J.R. (2009). Introduction to Spectroscopy. (4th ed.). USA: Cengage Learning.
- Sharma, Y.R. (2013). Elementary Organic Spectroscopy. (5th ed.). New Delhi: S. Chand Publishing.

(18 Hours)

(18 Hours)

(18 Hours)

Credit: 5 Total Hours: 90 (Incl. Se				rs: 90 (Incl. Semin	ar & Test)	
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			Hours	Outcome		Evaluation
Ι	UV-Visi	ble and IR spectroscopy				
	1	UV-Visible spectroscopy - principle - types of electronic excitations - chromophore - auxochrome - bathochromic - hypsochromic - hypochromic and hyperchromic shifts	3	Recognize the concepts of UV- Visible spectroscopy	Flipped Lecture	Evaluation through online quiz (quizizz), slip test, group
	2	Woodward-Fieser rules to calculate λ_{max} values of conjugated dienes - α,β - unsaturated carbonyl compounds and aromatic compounds. Fieser-Khun rule.	6	Calculate the λ_{max} values of organic compounds	Group discussion and problem solving	discussion and problem solving Formative
	3	Effect of solvent polarity on λ_{max} .	1	Describe the role of solvent polarity in electronic transitions	Lecture with ppt	assessment I
	4	IR spectroscopy: principle - Hooke's law - types of molecular vibrations.	2	Recollect the concepts of IR spectroscopy	Lecture with videos	
	5	Factors influencing the vibrational frequency. Identification of functional groups in organic compounds.	3	Identify the functional groups in organic compounds	Lecture and Group discussion	
	6	Finger print region. Fermi resonance - overtones and combination bands.	3	Depict various bands in IR spectroscopy	Lecture with ppt	
II	¹ H NMR	Spectroscopy		•	•	•
	1	¹ H NMR Spectroscopy: principle - instrumentation - shielding and deshielding.	3	Understand the concepts and instrumentation of NMR spectroscopy	Lecture with videos	Evaluation through class test, quiz, group discussionan
	2	Chemical shift - factors affecting chemical shift - electronegativity - hybridization - hydrogen bonding - anisotropic effect - double bond - triple bond - aromatic compounds - carbonyl compounds and	4	Explain the factors which affect the chemical shift	Lecture with ppt	d problem solving Formative assessment I

		annulenes.				
	3	Spin-spin splitting pattern of simple organic compounds	3	Predict the splitting pattern of organic compounds	Group discussion and problem solving	
	4	Types of coupling - germinal - vicinal - long range and through space coupling. Karplus equation. Coupling constant - AB, AB ₂ and A ₂ B ₃ .	4	Analyse the types of coupling	Lecture with ppt	
	5	Simplification of complex spectra - chemical exchange, double resonance and NMR shift reagents. Temperature dependent NMR.	4	Describe the methods used for the simplification of complex spectrum	Lecture with ppt	
III	$^{13}C, ^{19}F$	and ³¹ P NMR Spectroscopy				
	1	¹³ C NMR spectroscopy: principle - comparison of ¹³ C NMR and ¹ H NMR. Chemical shift - factors affecting chemical shift.	3	Understand the concepts of ¹³ C NMR spectroscopy	Lecture with ppt	Evaluation through class test, quiz and group discussion
	2	Homonuclear and heteronuclear coupling. Broad band decoupling and OFF - resonance decoupling.	3	Analyze the types of coupling and decoupling	Lecture with ppt	Formative assessment II
	3	Distortionless Enhancement by Polarization Transfer (DEPT) spectrum - DEPT-45 - DEPT- 90 and DEPT-135.	3	Illustrate DEPT spectrum	Lecture with videos	
	4	2D Correlation spectroscopy (COSY) - HOMCORR - ¹ H- ¹ H and ¹³ C- ¹³ C connectivity. HETCORR - ¹ H- ¹³ C connectivity and MRI.	3	Interpret COSY- HOMCOR and HETCOR	Lecture	
	5	¹⁹ F NMRspectroscopy: precessional frequency and heteronuclear coupling. Identification of organofluoro compounds CF ₃ CO ₂ Et and CF ₃ CH ₂ OH.	3	Identify organofluoro compounds using ¹⁹ F NMRspectrosco py	Lecture with ppt	

	6	³¹ P NMR spectroscopy:	3	Identification of	Lecture	
	Ũ	chemical shift - heteronuclear	5	organophosphor	with ppt	
		coupling and P-P bond in		ous compounds	With pp	
		NMR Identification of		using ³¹ P NMR		
		organophosphorous		spectroscopy		
		compounds (Me) ₂ P -		speedoseopy		
		$(FtO)_2P=O$ and Ph_2P				
IV	Mass Sn	actrometry				
1 V	1 1	Principle - production of ions -	Λ	Understand the	Lecture	Evaluation
	1	Flectronic Ionization (FI)	-	principle and	with	through class
		Chemical Ionization (CI) and		principle and production of	videos	test quiz
		East Atom Rombardment		ions in mass	videos	aroup
		(FAR)		spectroscopy		discussion
	2	(IAD). Molecular ion peak base peak	2	Identify the	Lecture	and problem
	2	meta stable peak and isotopic	2	nucliury the	with ppt	solving
		- meta stable peak and isotopic		spectrum	with ppt	solving
	2	Nitro e e mala Malaffanta	2	Spectrum State and	T a stas us	Formative
	3	Nitrogen fule. McLallerly	Z	State and	Lecture	assessment I
		Alder reaction		explain nitrogen		discussion in
		Alder reaction.		fule and		
				Iragmentation		
			10	reactions	.	
	4	General modes of	10	Predict the	Lecture	
		fragmentation. Fragmentation		fragmentation	and group	
		pattern of simple organic		pattern of	discussion	
		compounds - alkenes - alkyl		organic		
		and aryl halides - alkylbenzene		compounds		
		- benzene - aliphatic alcohols -				
		phenols - aliphatic and				
		aromatic acids - ketones -				
		aldehydes - furan - pyrrole and				
X 7	<u> </u>	pyridine.	1.0 (
V	Structur	al Elucidation using Analytical a	and Spectra	al Data		
	1	Determination of molecular	4	Determine the	Group	Evaluation
		formula of organic compounds		molecular	discussion	through class
		using elemental (CHN)		formula of	and	test, group
		analysis data.		chemical	problem	discussion
				compounds	solving	and problem
	2	Structural determination of	14	Elucidate the	Group	solving
		simple organic compounds		structure of	discussion	
		using UV - IR - NMR and		chemical	and	Formative
		Mass spectral data.		compounds	problem	assessment II
		1.			solving	

Course Instructor: Dr. Sheeba Daniel

HOD: Dr. G. Leema Rose

Semester III Thermodynamics and Group Theory (Core VIII) Course Code: PG2032

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Objectives:

- To learn the various concepts of thermodynamics and statistical thermodynamics.
- To apply the concepts of group theory to molecules.

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the concepts and applications of thermodynamics and group theory	PSO-1	U
CO-2	apply thermodynamics and group theory to determine thermodynamic parameters, vibrations and hybrid orbitals	PSO-2	А
CO-3	analyze the thermodynamic functions, point groups and normal mode of vibration of molecules	PSO-2	Y
CO-4	evaluate the thermodynamic parameters and delocalization energy in molecules	PSO-2	Е

Unit I

Hours)

Thermodynamics and Non-Ideal Systems: Concepts of partial molar properties - partial molar free energy and partial molar volume. Gibbs-Duhem equation. Chemical potential - variation of chemical potential with temperature and pressure - Van't Hoff isotherm. Fugacity - determination of fugacity of gases by graphical method - variation of fugacity with temperature and pressure - Lewis Randal rule and Duhem-Margules equation. Determination of activity and activity coefficient of non-electrolyte by e.m.f method - excess functions.

Unit II

Irreversible Thermodynamics: Nernst heat theorem - Third law of thermodynamics - applications of third law - entropy change -calculation of absolute entropies - apparent exceptions to third law. Non-equilibrium thermodynamics - basic concepts - forces and fluxes - entropy of irreversible processes - entropy production - Clausius inequality - phenomenological equations - Onsager reciprocity relations and coupled reactions. Principle of microscopic reversibility - the Onsager reciprocal relations - verification. Entropy production.

Unit III

Statistical Thermodynamics: Statistical thermodynamics - concept of distributions - types of particles (bosons, fermions, mesons) - types of ensembles. Thermodynamic probability -

(18 Hours)

(18 Hours)

(18

most probable distribution law - classical statistics - Maxwell-Boltzmann (MB) statistics - Quantum statistics - Bose-Einstein (BE) and Fermi-Dirac (FD) statistics - derivation of distribution function - MB, BE and FD statistics - comparison. Partition functions - translational - rotational - vibrational and electronic partition function - calculation of thermodynamic parameters and equilibrium constants in terms of partition function. Debye and Einstein heat capacity of solids.

Unit IV

Group Theory I: Molecular symmetry elements - symmetry operations - molecular symmetry and point groups. Group multiplication tables - abelian - non-abelian - cyclic and sub groups - conjugacy relation and classes. Representation of symmetry operations by matrices - representation for C_{2v} - C_{3v} and C_{2h} point groups. Reducible and irreducible representations. The great orthogonality theorem and its consequences. Construction of the character tables - C_{2v} - C_{3v} and C_{2h} point groups.

Unit V

(18 Hours)

(18 Hours)

Group Theory II: Standard reduction formula - symmetry of normal modes of vibration in H_2O - NH_3 and CO_2 . Application of group theory to normal mode analysis of H_2O and NH_3 . Symmetry properties of integrals and symmetry based selection rule for vibrational spectra. Identification of IR and Raman active fundamentals - symmetry of molecular orbitals and symmetry based selection rule for electronic transition - prediction of electronic transitions in ethylene and formaldehyde. Determination π - electron energy in ethylene. HMO theory - HMO calculations and delocalization energy in trans-1,3-butadiene and benzene. Application of Determination of hybridization in CH₄ and BF₃.

Text Books

- 5. Kuriacose, J.C. & Rajaram, J. (1986). Thermodynamics. (1st ed.). Delhi: Shohanlal and Company.
- 6. Atkins, P. & Atkins, J.P. (2002). Physical Chemistry. (7th ed.). USA: Oxford university press.
- 7. Puri, B.R., Sharma, L.R. & Pathania, M.S. (2016). Principles of Physical Chemistry (47th ed.). India: Vishal Publications.
- 8. Bhattacharya, P.K. (1986). Group Theory and its Chemical Applications. India: Himalaya Publishing house.
- 9. Cotton, F.A. (2008). Chemical Applications of Group Theory. (3rd ed.). New York: Wiley.

Reference Books

- 1. Glasstone, S. (1969). Thermodynamics for chemistry. New York: Van Nostrand Company
- 2. Glasstone, S.A. (1969). Text Book of Physical Chemistry. (2nd ed.). London: Macmillan and Co Ltd.
- 3. Kapoor, K.L. (1986). Text Book of Physical Chemistry. Delhi: MacMillan India Ltd.
- 4. Ramakrishnan, V. & Gopinathan, M.S. (1998). Group Theory in Chemistry. India: Vishal Publications.
- 5. Raman, K.V. (1990). Group Theory and its Applications to Chemistry. India: Tata Mcgraw Hill Publishing Co.

Credit: 5

Total Hours: 90 (Incl. Seminar & Test)

Unit	Sect	Topics	Lecture	Learning	Pedagogy	Assessment/
-	ion		Hours	Outcome		Evaluation
1	Ther	nodynamics and Non-Idea	l Systems		-	
		Concepts of partial molar properties - partial molar free energy and partial molar volume. Gibbs- Duhem equation.	4	Recognize the concepts of partial molar properties.	Lecture	Evaluation through class test Formative assessment I
	2	Chemical potential - variation of chemical potential with temperature and pressure - Van't Hoff isotherm and solution.	4	Explain the effect of pressure and temperature on chemical potential	Lecture and Seminar	
	3	Fugacity - determination of fugacity of gases by graphical method - variation of fugacity with temperature and pressure	4	Determine the fugacity of gases	Lecture and Seminar	
	4	Lewis Randal rule and Duhem-Margules equation	3	Deduce the relationship between fugacity and mole fraction	Lecture and group discussion	
	5	Determination of activity and activity coefficient of non-electrolyte by e.m.f method - excess functions.	3	Determine the activity and activity coefficient of non- electrolyte	Lecture	
II	Irreversible Thermodynamics					
	1	Nernst heat theorem - Third law of thermodynamics - applications of third law.	4	Discuss the effect of temperature on entropy change of reactions.	Lecture and group discussion	Evaluation through class test and group discussion

	2 3	entropy change - calculation of absolute entropies - apparent exceptions to third law. Non-equilibrium thermodynamics - basic concepts - forces and fluxes - entropy of irreversible processes -	3	Calculate the absolute entropies of various reactions Explain the - basic concepts of non- equilibrium thermodynamics	Group discussion and problem solving Lecture	Formative assessment II
	4	Clausius inequality - phenomenological equations - Onsager reciprocity relations and coupled reactions.	4	Deduce Onsager reciprocity relations	Lecture	
	5	Principle of microscopic reversibility - the Onsager reciprocal relations - verification. Entropy production.	4	Verify Onsager reciprocity relations	Lecture and group discussion	
III	Statis	tical Thermodynamics		I	I	
	1	Statistical thermodynamics - concept of distributions - types of particles (bosons, fermions, mesons) - types of ensembles.	4	Classify the types of particles and ensembles	Lecture and group discussion	Evaluation through class test and group discussion Formative
	2	Thermodynamic probability - most probable distribution law - classical statistics - Maxwell-Boltzmann (MB) statistics	3	Derive Maxwell- Boltzmann distribution equation	Lecture	assessment III
	3	Quantum statistics - Bose-Einstein (BE) and Fermi-Dirac (FD) statistics - derivation of distribution function -	5	Compare MB, BE and FD statistics	Lecture and group discussion	

	4	MB, BE and FD statistics - comparison. Partition functions - translational - rotational - vibrational and alcostropsis partition	3	Describe various partition functions	Lecture	
	5	function function calculation of thermodynamic parameters and equilibrium constants in terms of partition function. Debye and Einstein heat capacity of solids.	3	Calculate equilibrium constant in terms of partition function	Group discussion	
IV	Grou	p Theory I		1		1
	1	Molecular symmetry elements - symmetry operations - molecular symmetry and point groups.	4	Understand symmetry elements and symmetry operations	Lecture	Evaluation through class test and group discussion
	2	Group multiplication tables - abelian - non- abelian - cyclic and sub groups - conjugacy relation and classes.	3	Explain the terms in group theory	Lecture and group discussion	Formative assessment II
	3	$\begin{array}{ll} Representation & of \\ symmetry operations by \\ matrices - representation \\ for C_{2v} - C_{3v} \ and \ C_{2h} \ point \\ groups. \end{array}$	4	Represent symmetry operations	Lecture	
	4	Reducible and irreducible representations. The great orthogonality theorem and its consequences.	3	Apply orthogonality theorem for the construction of character table	Lecture and PPT	

	5	Construction of the	4	Construct character	Lecture	
		character tables C_{2v} , C_{3v}		table for different		
		and C_{2h} .		point groups		
V	Grow	n Theory – II				
	1	Standard reduction	4	Apply group theory	Lecture	Evaluation
	-	formula - symmetry of	-	to normal mode	and group	through class
		normal modes of		analysis of H ₂ O	discussion	test and
		vibration in H ₂ O - NH ₃		NH ₃ and CO ₂		group
		and CO_2 Application of		, , , , , , , , , , , , , , , , , , ,		discussion
		group theory to normal				
		mode analysis of H_2O				Formative
		and NH ₃ .				assessment II
	2	Symmetry properties of	4	Identify IR and	Lecture	
		integrals and symmetry		Raman active	and group	
		based selection rule for		vibrations	discussion	
		vibrational spectra.				
		Identification of IR and				
		Raman active				
		fundamentals - symmetry				
		of molecular orbitals				
	3	symmetry based	4	Predict the	Lecture	
		selection rule for		electronic		
		electronic transition -		transitions in		
		prediction of electronic		ethylene and		
		transitions in ethylene		formaldehyde		
		and formaldehyde.				
	4	Determination of π -	3	Apply group theory	Lecture	
		electron energy in		and HMO theoryto		
		ethylene.HMO theory -		determine π -		
		HMO calculations		electron energy		
	5	delocalization energy in	3	Determine the	Lecture	
	5	trans_1.3_butadiene and	5	bybridization of	and videos	
		benzene Application of		CH ₄ and BE ₂	and videos	
		Determination of		CI14 and DI3		
		hybridization in CH ₄ and				
		BF ₂				
		DI 3.				

Course Instructor: M.Shirly Treasa

HOD: G. Leema Rose

Semester III Advanced Topics in Chemistry (Elective III (a)) Course Code: PG2033

No. of hours per week	Credit	Total no. of hours	Marks	
4	3	60	100	

Objectives:

- To acquire knowledge about nanoparticles and green chemistry.
- To gain idea about supramolecular chemistry.
- To study the applications of medicinal and biophysical chemistry.

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO	CL
		Addressed	
CO-1	understand the principles and application of advanced areas in chemistry	PSO-1	U
CO-2	apply the principle of nanochemistry and green chemistry to design and synthesise novel compounds	PSO-2,3	А
CO-3	analyze the properties of nanoparticles, supramolecular interactions, therapeutic action of drugs and reactions in biomolecules	PSO-2,3	Y
CO-4	evaluate atom economy in green synthesis, structure and therapeutic action of various drugs and role of singlet oxygen in biology	PSO-2,4	E
CO-5	create novel nanoparticles and compounds using green chemistry techniques	PSO-3,4	С

Unit I

Nanochemistry: General principles of nanotechnology. Nanoparticles - definition - size relationship - nanoparticles of metals - semiconductors and oxides. Synthesis of nanosized compounds - reduction methods and solgel methods. Optical and electrical properties of nanoparticles. Nanosystems - introduction - synthesis and purification of fullerenes. Carbonnanotubes - types - preparation - Arc and chemical vapour deposition methods. Nanoshells - gold and silver nanoshells and its applications. Nanosensors - introduction - nanoscale organization - characterization and optical properties. Nanomedicines - introduction - approach to developing nanomedicines - protocol for nanodrug administration - diagnostic and therapeutic applications.

Unit II

Green Chemistry: Green chemistry and sustainable development - principles and applications of green chemistry. Atom economy - atom economy vs. yield. Prevention of waste/byproducts. Prevention or minimization of hazardous products. Designing safer chemicals through Sommelet-Hauser - Cope - Wolff - Witting and Bamberger reactions. Energy requirement for synthesis. CFC alternatives - green chemistry in organic synthesis.

(12 Hours)

(12 Hours)

Selection of appropriate solvent and starting material. Use of protecting groups and catalyst. Methods of greening organic reactions - solvent free reactions and reactions at ambient temperature. Microwave assisted reactions. Sonication assisted reactions - Reformatsky - Ullmann coupling - Wurtz and Bouveault reaction. Reactions in ionic solvents and super critical fluids. Tandem reactions.

Unit III

Supramolecular Chemistry: Supramolecular interactions - discussion of host-guest systems - cation and anion binding host. Crown ethers - synthesis - properties and applications. Lariat ethers. Podants - properties and 3-dimensional podants. Cryptands - synthesis - properties and applications. Spherands - synthesis - structure and uses. Supramolecular chemistry of fullerenes and cyclodextrins. Molecular devices - non-linear optical switches and electrophotoswitching, Liquid crystal display. Supramolecular photochemistry.

Unit IV

Medicinal Chemistry: Modern drugs for diseases. Anticancer drugs - classification - synthesis and assay of cyclophoshamide - chlorambucil - cisplatin - vinblastine and vincristine. Antimalarial drugs - classification - synthesis and assay of chloroquine and primaquine. Diuretics - classification - synthesis and assay of Frusemide and benzthiazide. Anti-inflammatory drug - synthesis and therapeutic action of phenylbutazone and ibuprofen. Antipyretics and non-narcotic analgesics - synthesis and therapeutic action of paracetamol and aspirin

Unit V

Biophysical Chemistry: Thermodynamics in biology and limitations of equilibrium thermodynamics. Irreversible thermodynamics - postulates and methodologies. Irreversible thermodynamics and biological systems. Biochemical standard state - ATP. Currency of energy - oxidative phosphorylation. Role of singlet oxygen in biology. Reactions in biomolecules - membrate potential and ion pumps. Photoacoustic effect and its application in biology. Biophysical applications of Moss-bauer effect. NMR imaging - applications of spin labeling in membrane research.

Text Books

- Klabunde, K.J. & Richards, R.M. (2009). (2nd ed.). Nanoscale Materials in Chemistry. New York: Wiley.
- 2. Ozin, G. & Arsenault, A. (2005). Nanochemistry: A Chemical Approach to Nanomaterials. USA: Elsevier.
- 3. Rao, C.N.R. (2001). Nanochemistry. New York: Wiley.
- 4. Ahluwalia, V.K. (2006). Green chemistry-Environmentally benign reactions. India: Ane Books Publications.
- 5. Kar, A. (2007). Medicinal Chemistry. (4th ed.), New Age International Publishers.

(12 Hours)

(12 Hours)

(12 Hours)

Reference Books

- 1. Brechignac, C., Houdy, P. & Lahmani, M. (2006). Nanomaterials and Nano chemistry. New York: Springer.
- 2. Nalwa, H. (1998). Nanostructured Materials and Nanotechnology. New York: Academic Press.
- 3. Ahluwalia, V. K. (2012). Strategies for Green Organic Synthesis. New York: Taylor and Francis group, CRC Press.
- 4. Matlack, A. (2010). Introduction to Green Chemistry. (2nd ed.). New York: Taylor and Francis group, CRC Press.
- 5. Ilango, K. & Valentina, P. (2009). Text Book of Medicinal chemistry. (4th ed.). India: Keerthi Publishers.

Cı	Credit: 3			Total Hours: 60 (Incl. Seminar & Test)			
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/	
			Hours	Outcome		Evaluation	
Ι	Nanoche	emistry					
	1	General principles of nanotechnology. Nanoparticles - definition - size relationship - nanoparticles of metals - semiconductors and oxides.	2	Understand the properties of nanoparticles	Lecture	Evaluation through class test and group discussion Formative	
	2	Synthesis of nanosized compounds - reduction methods and solgel methods. Optical and electrical properties of nanoparticles	2	Explain the synthesis of various nanoparticles	Lecture and Videos	assessment I	
	3	Nanosystems - introduction - synthesis and purification of fullerenes. Carbonnanotubes - types - preparation - Arc and chemical vapour deposition methods	2	Describe the synthetic methods involved in carbon nanotubes and fullerenes	Lecture and Videos		
	4	Nanoshells - gold and silver nanoshells and its applications. Nanosensors - introduction - nanoscale organization - characterization and optical properties	1	Understand the applications of gold and silver nanoshells	Lecture with PPT		
	5	Nanosensors - introduction - nanoscale organization - characterization and optical properties	3	Explain nanosensors and its properties	Lecture and Seminar		
	6	Nanomedicines-introduction-approachtodevelopingnanomedicines-fornanodrugadministration-diagnosticandtherapeutic applications.	2	Describe the therapeutic applications of nanoparticles	Lecture and group discussion		

II	Green Chemistry					
	1	Green chemistry and sustainable development - principles and applications of green chemistry	2	Understand the principle and applications of green chemistry	Lecture	Evaluation through class test and group discussion
	2	Atom economy - atom economy vs. yield. Prevention of waste/byproducts. Prevention or minimization of hazardous products.	2	Explain the applications of green chemistry	Lecture and group discussion	Formative assessment II
	3	Designing safer chemicals through Sommelet-Hauser - Cope - Wolff - Witting and Bamberger reactions	2	Design and synthesize compounds using green methods	Lecture	
	4	Energy requirement for synthesis. CFC alternatives - green chemistry in organic synthesis. Selection of appropriate solvent and starting material. Use of protecting groups and catalyst.	2	Understand the role of solvent, protecting groups and catalyst in green synthesis	Lecture and seminar	
	5	Methods of greening organic reactions - solvent free reactions and reactions at ambient temperature. Microwave assisted reactions	1	Explain the synthesis of compounds using solvent free and microwave assisted reactions	Lecture and videos	
	6	Sonication assisted reactions - Reformatsky - Ullmann coupling - Wurtz and Bouveault reaction	2	Apply sonication method for synthesis of nanoparticles	Lecture and seminar	
		Reactions in ionic solvents and super critical fluids. Tandem reactions.	1	Explain the reactions in ionic solvents	Lecture and seminar	
III	Supramolecular Chemistry					
	1	Supramolecular interactions - discussion of host-guest systems - cation and anion binding host. Crown ethers - synthesis - properties and applications. Lariat ethers	2	Understand the host-guest relation in supramolecular chemistry Explain the applications of crown ethers	Lecture with videos Lecture with ppt and videos	Evaluation through class test and group discussion Formative assessment I
----	----------	---	---	---	--	---
	3	Podants - properties and 3-dimensional podants. Cryptands - synthesis - properties and applications. Spherands - synthesis - structure and uses.	3	Describe the properties and applications of podants, cryptands and spherands	Lecture and group discussion	
	4	Spherands - synthesis - structure and uses. Supramolecular chemistry of fullerenes and cyclodextrins.	2	Explain supramolecular photochemistry	Lecture and seminar	
	5	Molecular devices - non- linear optical switches and electrophotoswitc hing, Liquid crystal display. Supramolecular photochemistry.	3	Understand the types and applications of molecular devices	Lecture with videos	
IV	Medicina	al Chemistry				
	1	Modern drugs for diseases. Anticancer drugs - classification - synthesis and assay of cyclophoshamide - chlorambucil- cisplatin - vinblastine and vincristine.	2	Identify anti- neoplastic agents	Lecture	Evaluation through class test Formative assessment III
	2	Antimalarial drugs - classification - synthesis and assay of chloroquine and primaquine.	2	List out the classification and the assay of antimalarial drugs	Seminar	

	3	Diuretics - Classification, synthesis Assay of Frusemide Assay of benzthiazide. Anti-inflammatory drug - synthesis and therapeutic action of phenylbutazone and ibuprofen	2	Explain the classification and the assay of diuretics Understand the therapeutic action of anti- inflammatory drugs	Seminar	
	5	Antipyretics and non- narcotic analgesics	2	Know about antipyretics and analgesics	Seminar	
	6	Synthesis and therapeutic action of paracetamol and aspirin	2	Describe the synthesis and therapeutic action of paracetamol and aspirin		
V	Biophysi	ical Chemistry				
	1	Thermodynamics in biology and limitations of equilibrium thermodynamics. Irreversible thermodynamics - postulates and methodologies. Irreversible thermodynamics and biological systems	3	Explain thermodynamics in biological systems	Lecture	Evaluation through class test Formative assessment II
	2	Biochemical standard state - ATP. Currency of energy - oxidative phosphorylation.	3	Understand energy flux and oxidative phosphorylation	Lecture and seminar	
	3	Role of singlet oxygen in biology. Reactions in biomolecules - membrate potential and ion pumps.	2	Describe the reactions in biomolecules	Lecture	
	4	Photoacoustic effect and its application in biology.	2	Apply photo acoustic effect in biology	Lecture with ppt	

5	Biophysical applications	2	Explain the	Lecture	
	of Moss-bauer effect.		biophysical	with	
	NMR imaging -		application of	videos	
	applications of spin		Moss-bauer effect		
	labeling in membrane		NMR imaging		
	research.				

Course Instructor: B.T Delma

HOD: G. Leema Rose

Semester IV Inorganic Spectroscopy, Photochemistry and Organometallics (Core IX) Subject Code: PG2041

Hours per week	Credits	Total Hours	Marks
6	6	90	100

Objectives:

- To understand the principle, interpretation and applications of various spectroscopic techniques to inorganic compounds
- To know the applications of photochemistry, organometallics and bio-inorganic chemistry

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the principles and concepts of inorganic spectroscopy, photochemistry and organometallics.	PSO-1	U
CO-2	apply the principles of spectroscopy, photochemistry and organometallic chemistry to inorganic compounds.	PSO-2	А
CO-3	analyse the structure, reactions and functions of inorganic compounds.	PSO-2	Y
CO-4	evaluate the spectral data and properties of inorganic compounds	PSO-3	Е

Course Outcomes (COs)

Unit I

(18 Hours)

IR, Raman and NMR Spectroscopy

IR spectroscopy: introduction - selection rules - stretching frequency of some inorganic ions - effect of coordination on the stretching frequency of sulphato - carbonato - sulphito - aqua - nitro - thiocyanato - cyano - thiourea and DMSO complexes.

Raman spectroscopy: introduction - combined applications of IR and Raman spectroscopy in the structural elucidation of N_2O - ClF_3 - NO_3^- - ClO_4 and metal carbonyls.

NMR spectroscopy: introduction - structural assessment of simple inorganic compounds - applications of ${}^{1}\text{H}$ - ${}^{15}\text{N}$ - ${}^{19}\text{F}$ and ${}^{31}\text{P}$ NMR spectroscopy in structural problems. Fluxional molecules and effect of quadrupolar nuclei in NMR spectroscopy.

Unit II

(18 Hours)

Mössbauer and Photoelectron Spectroscopy

Mössbauer (MB) spectroscopy: introduction - principle - recoil energy - doppler effect - number of MB signals - isomer shift - quadrupole splitting and magnetic hyperfine splitting. Applications of MB spectroscopy to 57 Fe - 119 Sn and 129 I compounds.

Photoelectron Spectroscopy (PES): theory - types - origin of fine structures - shapes of vibrational fine structures - adiabatic and vertical transitions. PES and evaluation of

vibrational constants of homonuclear diatomic molecules - N_2 and O_2 - heteronuclear diatomic molecules - CO and HCl - polyatomic molecules H_2O - CO_2 - CH_4 and NH_3 . Koopman's theorem- applications and limitations.

Unit III

Inorganic Photochemistry: Importance of photochemistry. Photochemistry of Co(III) complexes - photosubstitution - photooxidation - photoreduction and photoanation reactions. Photochemistry of Cr(III) complexes - Adamson's rule - photoaquation - photoisomerization - photoracemization - photoanation - photosubstitution in non-aqueous solvents and photoredox reactions. Photochemistry of ruthenium polypyridyls - preparation and characteristics of $[Ru(bpy)_3]^{2+}$ complex. Ground state and excited state properties of $[Ru(bpy)_3]^{2+}$ complex. Reactions of $[Ru(bpy)_3]^{2+}$ complex - photosubstitution - photosubstitution - photoredox and reductive quenching reactions.

Unit IV

Organometallic Chemistry: Organometallic compounds - types. EAN rule - 18e- and 16erules - determination of oxidation state - configuration - coordination number of the metal centre - types and application 18e- / 16e- rules. Carbonyls - isolated concept - structure of simple and polynuclear carbonlys. Nitrosyls - bridging and terminal nitrosyls - bent and linear nitorsyls. Synthesis, properties and structural features of metal complexes with carbene alkene - alkyne and arene. Hapticity. Metallocenes - synthesis - properties and bonding in ferrocene. Covalent versus ionic bonding in beryllocene. Reactions of organometallic compounds - substitution - oxidative addition and reductive elimination - insertion and deinsertion (elimination) reactions.

Unit V

Bio Inorganic Chemistry: Photosynthesis - photosystem I and II. Photosynthetic reaction center. Metallo enzymes - Zinc enzymes - structure and functions of carbonic anhydrase and carboxy peptidase. Iron enzymes - catalase and peroxidase. Super oxide dismutase (SOD) - superoxide toxicity - structure and function of Cu,Zn-SOD. Trace elements in biological system. Metal ion toxicity - classes of toxic metal compounds and detoxification. Metals in medicine - anti-arthritis drugs - Au and Cu in rheumatoid arthritis - Li in psychiatry - Pt, Au and metallocenes in anti-cancer drugs. Metals in radiodiagnosis and magnetic resonance imaging.

Text Books

- Roundhill, D.M. (1994). Photochemistry and Photophysics of Metal Complexes. (1st ed.). New York: Plenum Press.
- 6. Kaur, H. (2006). Spectroscopy. (3rded.).Meerut: Pragati Prakasan Publications.
- 7. BanWell, C.N. & Mccash, E.M. (1997). Fundamentals of Molecular Spectroscopy. New Delhi: Tata Mc Grow Hill.
- Malik, W.U., Tuli, G.D. & Madan, R.D. (2012). Selected topics Inorganic Chemistry. (5th ed.). New Delhi: S. Chand Company Ltd.

(18 Hours)

(18 Hours)

(18 Hours)

9. Chatwal, G.R. & Bhagi, A.K. (2005). Bio-inorganic Chemistry. (2nd ed.). India: Himalaya Publishing House.

Reference Books

- 1. Rohatgi, K.K. & Mukherjee, K.K. (2014). Fundamentals of Photochemistry. (3rd ed.). India: New Age International.
- 2. Iggo, J.A. (2000). NMR Spectroscopy in Inorganic Chemistry. USA: Oxford Scientific Publications.
- 3. Brisdon, A.K. (1998). Inorganic Spectroscopic Methods. USA: Oxford Scientific Publications.
- 4. Horwood, E. (2010). NMR, NQR, EPR and Mössbauer Spectroscopy in Inorganic Chemistry. (1st ed.). New York: Ellis Horwood Ltd.
- 5. Puri, B.R., Sharma L.R. & Kalia, K.C. (2012). Principles of Inorganic Chemistry. (4th ed.), India: Milestone publishers.
- 6. Miessler, G.L. (2004). Inorganic Chemistry. (3rd ed.), India: Pearson Education.
- 7. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. (2011). Inorganic Chemistry, Principles of Structure and Reactivity. (4th ed.). India: Pearson Education.

	Credits: 6			Total Hours: 90 (Incl. Seminar & Test)			
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/	
			Hours	Outcome		Evaluation	
Ι	IR, Ram	an and NMR Spectroscopy		·			
	1	IR spectroscopy: introduction - selection rules - stretching frequency of some inorganic ions - effect of coordination on the stretching frequency of sulphato - carbonato - sulphito - aqua - nitro - thiocyanato - cyano - thiourea and DMSO complexes.	5	Understand the principle and applications of IR spectroscopy in structural determination	Lecture and PPT	Evaluation through class test Formative assessment I	
	2	Ramanspectroscopy:introduction-combinedapplications of IR and Ramanspectroscopy in the structuralelucidation of N_2O - ClF_3 - NO_3^- - ClO_4 andmetalcarbonyls.	5	Understand the principles of Raman Spectroscopy and compare IR and Raman Spectroscopy in structure elucidation	Lecture and PPT		
	3	NMRspectroscopy:introduction-assessmentofsimpleinorganiccompoundsapplicationsof ¹ H- ¹⁹ Fand ³¹ PNMRspectroscopystructuralproblems	5	Understand the principles of NMR spectroscopy and apply NMR spectroscopy to solve structural problems	Lecture and PPT		
	4	Fluxional molecules and effect of quadrupolar nuclei in NMR spectroscopy.	3	Analyse the effect of quadrupolar nuclei in NMR spectroscopy	Lecture and Seminar		
Π	Mössbau	er and Photoelectron Spectros	сору				
	1	Mossbauer (MB) spectroscopy: introduction - principle - recoil energy - doppler effect - number of MB signals - isomer shift - quadrupole splitting and magnetic hyperfine splitting. Applications of MB spectroscopy to ⁵⁷ Fe - ¹¹⁹ Sn and ¹²⁹ I compounds.	6	Understand the principle of Mössbauer (MB) spectroscopy and apply MB spectroscopy to ⁵⁷ Fe - ¹¹⁹ Sn and ¹²⁹ I compounds.	Lecture and PPT	Evaluation through class test and group discussion Formative assessment II	

Teaching Module

	2	Photoelectron Spectroscopy	5	Apply	Lecture	
		(PES): theory - types - origin		Photoelectron	and	
		of fine structures - shapes of		Spectroscopy to	demonstra	
		vibrational fine structures -		predict the origin	tion	
		adiabatic and vertical		and shapes of		
		transitions.		vibrational fine		
				structures		
	3	PES and evaluation of	4	Evaluate the	Lecture	
		vibrational constants of		vibrational	and group	
		homonuclear diatomic		constants of	discussion	
		molecules - N_2 and O_2 -		homonuclear and		
		heteronuclear diatomic		heteronuclear		
		molecules - CO and HCl -		diatomic molecules		
	4	Polyatomic molecules H ₂ O -	3	Apply Koopman's	Lecture	
		CO_2 - CH_4 and NH_3 .		theorem	and group	
		Koopman's theorem-			discussion	
		applications and limitations				
	T					
111	Inorgan	ic Photochemistry	5	I la devictore d the	Lastara	Evelvetion
	1	naportance of photoshomistry	5	Understand the	and DDT	Evaluation
		Photochemistry of Co(III)		various		tast and
		acomplexes photosubstitution		reactions of Co(III)		test and
		photoovidation		complexes		discussion
		- photoexidation -		complexes		uiscussion
		photoreduction and				Formative
	2	Photochamistry of Cr(III)	5	Compare the types	Lecture	assessment II
	2	complexes - Adamson's rule -	5	of photochemical	and	assessment II
		photoaquation		reactions in non-	seminar	
		photoisomerization -		aqueous solvents	semma	
		photorscemization		and photoredox		
		photoanation -		reactions		
		photosubstitution in non-		reactions		
		aqueous solvents and				
		photoredox reactions				
	3	Photochemistry of ruthenium	4	Understand the	Lecture	
	5	polypyridyls - preparation		preparation and	and group	
		and characteristics of		characteristics of	discussion	
		$[Ru(bpy)_3]^{2+}$ complex		$[Ru(bny)_3]^{2+}$	andeassion	
				complex		
	4	Ground state and excited state	4	Compare the	Lecture	
		properties of $[Ru(bpy)_3]^{2+}$		ground state and	and	
		complex. Reactions of		excited state	seminar	
		$[Ru(bpy)_3]^{2+}$ complex -		properties of		
		photosubstitution -		$[Ru(bpy)_3]^{2+}$		
		photoredox and reductive		complex		
		quenching reactions.				
		notallia Chamistry				

	1	Organometallic compounds - types. EAN rule - 18e- and 16e- rules - determination of oxidation state - configuration - coordination number of the metal centre - types and application 18e- / 16e- rules	5	Understand the types of Organometallic compounds and apply EAN rule	Lecture and group discussion	Evaluation through class test and group discussion Formative assessment I
	2	Carbonyls - isolated concept - structure of simple and polynuclear carbonlys.	2	Compare the structure of simple and polynuclear carbonlys	Lecture and group discussion	
	3	Nitrosyls - bridging and terminal nitrosyls - bent and linear nitorsyls.	2	Classify bridging and terminal nitrosyls - bent and linear nitorsyls	Lecture and discussion	
	4	Synthesis, properties and structural features of metal complexes with carbene - alkene - alkyne and arene.	4	Correlate the structural features of metal complexes	Lecture and project	
	5	Hapticity . Metallocenes - synthesis - properties and bonding in ferrocene. Covalent versus ionic bonding in beryllocene.	3	Compare Covalent versus ionic bonding in beryllocene	Lecture	
	6	Reactions of organometallic compounds - substitution - oxidative addition and reductive elimination - insertion and deinsertion (elimination) reactions	2	Analyse the various reactions of organometallic compounds	Lecture and Discussion	
V	BIO Inor	ganic Chemistry - II	2	0 1	T (
	1	Photosynthesis, photosystem I and II and photosynthetic reaction centre.	3	Generalize photosystem I, II and photosynthetic reaction	Lecture	Evaluation through class test, group discussion
	2	Metalloenzymes - enzymes in di-oxygen management.	3	Explain metalloenzymes	Lecture	and quiz Formative

3	Super oxide dismutase, superoxide toxicity, structure of Cu, Zn-SOD, enzymatic activity and mechanism.	3	Deduce the structure of Cu, Zn- SOD	Lecture and PPT	assessment I
4	Peroxidases, catalases, oxidases and mono oxygeneases.	3	Explain the functions of enzymes	Lecture	
5	Zinc enzymes - the structural role of zinc and zinc constellations of carbonic anhydrase, carboxy peptidase and alcohol dehydrogenase.	3	Understand the role of zinc in zinc enzymes	Lecture	
6	Metal complexes as probes of nucleic acids. Gold compounds and anti-arthritic agents.	3	Explain the role of metal complexes and its applications	Lecture and group discussion	

Course Instructor: Dr. S. Lizy Roselet

HOD: Dr. G. Leema Rose

Semester IV Photochemistry and Natural Products (Core X) Subject Code: PG2042

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Objectives:

- To understand various organic reactions with their mechanism and synthetic utility.
- To elucidate the structure and synthesise natural products.

Course	Outcomes	(COs)
--------	----------	-------

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand various organic reactions and their mechanism	PSO-1	U
CO-2	apply the reaction mechanism in organic synthesis	PSO-2	А
CO-3	analyze the structure and mechanism of reactions	PSO-2	Y
CO-4	evaluate the synthetic utility of reactions	PSO-2	E

Unit I

(18 Hours)

Organic Photochemistry: Introduction - Thermal versus photochemical reactions and Jablonski diagram. Photochemical reactions of ketones - photosensitization - Norrish type - I and Norrish type - II reactions and mechanisms - Paterno-Buchi reaction - photooxidation and photoreduction of ketones. Photochemistry of arenes - Photodimerisation - photoisomerisation. Reactions involving free radicals - Barton - Hundsdiecker - Pschorr and Gomberg-Bauchman reactions.

Unit II

Pericyclic Reactions: Characteristics and classifications of pericyclic reactions - electrocyclic - cycloaddition and sigmatropic reactions. Woodward Hofmann rule. Retro-Diels Alder reaction - Diels Alder reaction - 2+2 - 2+4 reactions. Cope rearrangements and Claisen rearrangements. Conservation of orbital symmetry. Prediction of reaction conditions using FMO - correlation diagrams and Zimmerman (Mobius-Huckel) approaches.

Unit III

Retrosynthetic Analysis: Retrosynthetic terminologies - linear and convergent approach - protecting groups - activating groups - synthons and synthetic equivalents. Target molecule - one functional group disconnection - two functional groups disconnection - 1,3- 1,5- and 1,4- dicarbonyl compounds. Functional group addition and interconversions. Umploung synthesis. Latent polarity. Retrosynthetic analysis - bisabolene - cis-jasmone - longifolene and cubane. Synthetic uses of nitrocompounds and alkenes.

(18 Hours)

(18 Hours)

Unit IV

Alkaloids: Extraction - general properties - classification and general methods for determining structure. Structural elucidation - atropine - cocaine - dictamnine - reserpine - aeronycine and morphine.

Unit V

(18 Hours)

Heterocyclic Compounds: Synthesis - reactions - structure - carbazole - oxazole - imidazole - thiazole - pyrones - pyrazole - pyrimidine - pyrazine - coumarins and chromone. Structural elucidation - flavones - isoflavone - anthocyanins - caffeine - theobromine and theopylline.

Text Books

- 1. Singh, J & Singh, J. (2012). Photochemistry and Pericyclic Reactions. (3rd ed.). India: New Age International Pvt. Ltd.
- 2. Tewari, K. S., Vishnol, N. K. & Mehrotra, S.N. (2002). A Text Book of Organic Chemistry. India: Vikas Publishing House Ltd.
- 3. Warren, S. (2014). Organic Synthesis: The Disconnection Approach. India: Wiley Pvt. Ltd.
- 4. Finar, I.L. (2002). Organic Chemistry Volume II. (5th ed.). India: Pearson Education
- 5. Bansal, R.K. (2014). Heterocyclic Chemistry. (5th ed.). India: New Age International Pvt. Ltd.
- Clayden, J. Greeves, N& Warren, S. (2012). Organic Chemistry. (2nd ed.). Oxford University Press.

Reference Books

- 1. Depuy, C.H., & Chapman, O.S. (1988). Molecular Reactions and Photochemistry. India: Prentice Hall Pvt. Ltd.
- 2. Gill, G.B. & Wills, M.R. (1974). Pericyclic Reactions. London: Chapman and Hall
- 3. Agarwal, O.P. (1947). Chemistry of Organic Natural Product Vol. I & II India: Goel Publishing House.
- 4. Joule, J.A. & Mills, K. (2010). Heterocyclic Chemistry. (5th ed.). India: Wiley Pvt. Ltd.
- 5. Ireland, R.E. (1969). Organic Synthesis. Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.
- 6. Carruthers, W. (2015). Modern Methods of Organic Synthesis. (4th ed), Cambridge University Press.

(18 Hours)

Teaching Module

Credit: 5

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
т	Organia	Dhotochomistry	nours	Outcome		Evaluation
1	1	Introduction - Thermal	4	Understand the	Lecture	Evaluation
		versus photochemical		basic concepts of	with ppt	through
		reactions and Jablonski		photochemistry		online quiz
		diagram.				
	2	Photochemical reactions	4	Analyze the	Lecture	Formative
		of ketones -		photochemical	and Group	assessment I
		photosensitization -		reaction	discussion	
		Norrish type - I and		mechanisms of		
		Norrish type - II		carbonyl		
		reactions and		compounds		
		mechanisms				
	3	Paterno-Buchi reaction -	4	Interpret	Lecture	
		photooxidation and		photoxidation and	and	
		photoreduction of		photoreduction	Seminar	
		ketones.		mechanisms in		
				ketones		
	4	Photochemistry of	2	Understand the	Lecture	
		arenes Photodimensation		mechanisms of		
		- photoisomerisation.		Photodimerisation		
				and photoicomorization		
	5	Possions involving free	1	Understand various	Lastura	
	5	redicale Porton	4		Lecture with ppt	
		Hundsdisskar Bacharr		involving from	with ppt	
		and Combarg		radicals		
		Bauchman reactions		Taurcais		
Π	Pericvcli	c Reactions				
	1	Characteristics and	4	Classify the types	Lecture	Evaluation
	1	classifications of		of pericyclic	and	through class
		pericyclic reactions -		reactions	Seminar	test. online
		electrocyclic -				quiz and
		cycloaddition and				group
		sigmatropic reactions.				discussion
	2	Woodward Hofmann	5	Differentiate	Lecture	
		rule. Retro-Diels Alder		Retro-Diels Alder		Formative
		reaction - Diels Alder		and Diels Alder		assessment I
		reaction - 2+2 - 2+4		reaction		
		reactions.				
	3	Cope rearrangements and	4	Compare Cope and	Lecture	
		Claisen rearrangements.		Claisen	and group	
		Conservation of orbital		rearrangements	discussion	
		symmetry.				
			1		1	

	4	Prediction of reaction	5	Predict FMO -	Lecture	
		conditions using FMO -		correlation		
		correlation diagrams and		diagrams and		
		Zimmerman (Mobius-		Zimmerman		
		Huckel) approaches.		(Mobius-Huckel)		
		/ 11		approaches		
III	Retrosyr	nthetic Analysis			I	
	1	Retrosynthetic	4	Understand the	Lecture	Evaluation
		terminologies - linear and		basic terminologies	with	through class
		convergent approach -		of retero synthesis	models	test, online
		protecting groups -				quiz and
		activating groups -				group
		synthons and synthetic				discussion
		equivalents.				
	2	Target molecule - one	6	Interpret one and	Lecture	Formative
		functional group		two functional		assessment II
		disconnection - two		groups		
		functional groups		disconnections		
		disconnection - 1,3- 1,5-				
		and 1,4- dicarbonyl				
		compounds.				
	3	Functional group	5	Illustrate functional	Lecture	
		addition and		interconversions in	and group	
		interconversions.		retro synthesis	discussion	
		Umploung synthesis.				
		Latent polarity.				
	4	Retrosynthetic analysis -	3	Interpret the	Lecture	
		bisabolene - cis-jasmone		retrosynthetic		
		- longifolene and		analysis of		
		cubane.		bisabolene - cis-		
				jasmone -		
				longifolene and		
				cubane.		
	5	Synthetic uses of		Describe the		
		nitrocompounds and		synthetic uses of		
		alkenes.		nitrocompounds		
IV	Alkaloid	S			L _	
	1	Extraction and general	3	Understand the	Lecture	Evaluation
		properties of alkaloids		general properties		through class
				of alkaloids		test and
	2	Classification of	3	Classify the types		group
		Alkaloids		of alkaloids		discussion
	3	General methods for	4	Understand the	Lecture	Formativa
		determining structure of		methods for		assessment II
		alkaloids		determining		assessment II
				structure of		
				alkaloids		

	4	Structural elucidation - atropine and cocaine dictamnine - reserpine - aeronycine and morphine.	4	Elucidate the structure of atropine and cocaine Elucidate the structure of various alkaloids	Lecture	
V	Heterocy	clic Compounds				
	1	Synthesis - reactions - structure - carbazole - oxazole - imidazole	5	Understand the synthesis and reactions of heterocyclic compounds	Lecture with videos	Evaluation through class test, group discussion and quiz
	2	Synthesis of thiazole - pyrones - pyrazole - pyrimidine	5	Understand the synthesis and reactions of heterocyclic compounds	Lecture	Formative assessment I
	3	Pyrazine - coumarins and chromone	2	Understand the synthesis and reactions of heterocyclic compounds	Lecture	Evaluation through class test, group discussion and quiz
	4	Structural elucidation - flavones - isoflavone - anthocyanins	3	Elucidate the structure of flavones, isoflavone and anthocyanins	Lecture and Group Discussion	Formative assessment II
	5	Caffeine - theobromine and theopylline.	3	Elucidate the structure of caffeine, theobromine and theopylline		

Course Instructor: Dr. Y. Christabel Shaji

HOD: Dr. G. Leema Rose

Semester IV Polymer chemistry (Core XI) Subject Code: PG2043

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Objectives:

- To gain knowledge about applications of polymers.
- To know the importance of various polymerization techniques.
- To study about synthetic polymers.

Course	Outcome	(COs)
--------	---------	-------

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO -1	Understand the concept of polymer chemistry	PSO - 1	U
CO -2	Apply the processing techniques in the manufacture of synthetic polymer	PSO - 5	А
CO -3	Analyze glass transition temperature, crystallinity and degradation in polymers.	PSO - 3	Y
CO -4	Evaluate molecular weight and size of the polymer	PSO - 3	Е

Unit I

(18 hours)

Chemistry of Polymerization: Basic concepts of polymer chemistry - repeat unit - degree of polymerization - classification - chain polymerization - free radical polymerization - ionic polymerisation - coordination polymerisation: Zeigler- Natta catalyst - stereo regulating polymerization - step polymerization - ring opening polymerization - copolymerisation - types - free radical copolymerisation - ionic copolymerization - topolymerization - block and graft copolymers.

Unit II

(18 hours)

Polymerisation Techniques Molecular Weight and Size: Polymerisation techniques - bulk - solution - suspension - emulsion - polymerizations -melt polycondensation - solution polycondensation interfacial condensation - solid and gas phase polymerization - molecular weight and size -number average and weight average molecular weights - sedimentation and viscosity average molecular weights -polydispersity and molecular weight distribution in polymers - practical significance of polymer molecular weight.

Unit III

Polymer Processing: Processing techniques - calendering - die casting - rotational casting - film casting - compression moulding - injection moulding - blow moulding - extrusion moulding - thermoforming, foaming and reinforcing techniques - hand lay-up technique - filament winding technique - spray-up technique. Fibre spinning - dry spinning - wet spinning - uniaxial orientation - post treatment for fibres.

(18 hours)

Unit IV

Synthetic Polymers: Synthetic resins - plastics - manufacture - applications - polyethylene - PVC - teflon -polystyrene - polymethylmethacrylate -polyurethane - phenolformaldehyde resins - urea- formaldehyde and melamine- epoxy polymers. Synthetic fibers - rayon -nylons -polyesters -acrylics – modacrylics. Natural rubber -production -constitution - vulcanization (hot and cold) - fillers and accelerators - antioxidants - synthetic rubber -SBR - butyl rubber - nitrile rubber -neoprene - silicone rubber and polysulphides.

Unit V

(18 hours)

Polymer Degradation and Additives: Polymer degradation - types - thermal degradation - mechanical degradation - photo degradation - degradation by ultrasonic waves - degradation by high energy radiation - hydrolytic and oxidative degradations - additives for polymers - fillers - plasticisers - thermal stabilizers - photo stabilizers - antioxidants and colourants.

Text Books

- 1. Billmeyer, F. (1971). Textbook of Polymer Science. (2nd ed), New York : John Wiley and Sons.
- 2. Gowariker, V.R (2009). Polymer Science. (2nd ed), New Age international .). India: New Age International Pvt. Ltd.
- 3. Braun, D. (1982). Simple Methods for Identification of Plastics. New York : Macmillan Publishing Co.
- 4. Robert Weast, C. (1985). Handbook of Chemistry and Physics. (65th ed), Boca Raton, FL : CRC Press.
- 5. Hightstown, N.J. (1990). Modern Plastics, Encyclopedia, Volume 67: McGraw Hill.

Reference Books

- 1. Odian, G. (2004). Principles of Polymerization. (4th ed): John Wiley and Sons
- 2. Manas Chanda. (2000). Advanced Polymer Chemistry: Marcel Dekker Inc.
- 3. Malcolm. P. Stevens. (1999). Polymer Chemistry: An Introduction. (3rd edition) : USA : Oxford University Press
- 4. Misra .G.S. (1993). Introductory Polymer Chemistry : New York : J. Wiley and Sons.
- 5. Charles E. Carraher Jr. (2017). Introduction to Polymer Chemistry. (4th ed):CRC Press.
- 6. Rodriguez, F., Cohen, C., Ober, C.K. & Archer, L. (2015). Principles of Polymer Systems. (6th ed), CRC Press.

(18 hours)

Teaching Module

Credit: 5

Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
-			Hours	Outcome		Evaluation
l	Chemist	ry of Polymerization			· -	
	1	Basic concepts of	4	Understand the	Lecture	Evaluation
		polymer chemistry -		basic concepts of	and group	through class
		repeat unit - degree of		polymer chemistry	discussion	test
		polymerization -				
		classification				Formative
	2		3	Discuss the	Lecture	assessment I
		stereochemistry of		nomenclature of	and group	
		polymers -nomenclature		stereo regular	discussion	
		of stereo regular		polymers		
		polymers				
	3	chain polymerization -	8	Explain the	Lecture	
		free radical		different types of	and ppt	
		polymerization - ionic		polymerization	11	
		polymerisation				
		coordination				
		polymerisation: Zeigler-				
		Natta catalyst - step				
		polymerization - ring				
		opening polymerization				
	4	copolymerisation -	3	Describe	Lecture	
		block and graft		copolymers		
		copolymers -		preparation		
		preparation.		I I I I I I		
		1 1				
II	Polymer	isation Techniques Molecu	lar Weight	and Size	I _	
	1	Polymerisation	4	Explain various	Lecture	Evaluation
		techniques -bulk -		polymerization		through class
		solution -suspension -		techniques		test and
		emulsion –				group
		polymerizations		~	-	discussion
	2	melt polycondensation -	4	Compare different	Lecture	
		solution		types of poly	and group	Formative
		polycondensation		condensation	discussion	assessment II
		interfacialcondensation		processes		

	3	solid and gas phase	4	Analyse solid and	Lecture	
		polymerization.		gas phase		
				polymerization		
				processes		
	4	polydispersity and	3	Evaluate the poly	Lecture	
		molecular weight		dispersity index		
		distribution in polymers		and molecular		
				weight of polymers		
	5	the practical	3	Explain the		
	5	significance of polymer	5	practical		
		molecular weight.		significance of		
				polymer		
				molecular weight.		
III	Polymer	Processing		1		1
	1	Processing -Calendering	5	Explain the various	Lecture	Evaluation
		- die casting - rotational		polymer casting		through class
		casting - film casting		processes		test and
	2	compression moulding -	5	Compare the	Lecture	group
		injection moulding -		moulding processes	and field	discussion
		blow moulding -		in polymers.	visit	F
		extrusion moulding				Formative
	3	thermoforming foaming	2	Explain the	Lecture	III
	5	and reinforcing	2	techniques of	Lecture	111
		techniques		polymer processes		
		teeninques		porymer processes.		
	4	synthetic resins _	6	Describe the	Videos	
	-	plastics- manufacture	0	manufacture and	and	
		and applications of		application of	industrial	
		polyethylene -PVC -		synthetic resins	visit	
		Teflon -polystyrene -			1.510	
		polymethylmethacrylat				
		e -polyurethane -				
		phenol- formaldehyde				
		resins - urea-				
		formaldehyde and				
		melamine- epoxy				
		polymers.				
187						
IV	Syntheti	c Polymers				

	1	Synthetic fibres -rayon - nylons -polyesters - acrylics -modacrylics	5	Describe the manufacture and application of synthetic fibres	Lecture and video	Evaluation through class test and group discussion
	2	spinning techniques	2	Explain the spinning techniques of polymer process	Lecture and video	Formative assessment II
	3	natural rubber - production -constitution - vulcanization (hot and cold)	3	Discusstheproductionandvulcanizationofrubber	Lecture and field visit	
	4	fillers and accelerators – antioxidants	3	Compare the functions of fillers accelerators and antioxidants	Lecture and group discussion	
	5	Synthetic rubber -SBR - butyl rubber - nitrile rubber -neoprene - silicone rubber and polysulphides.	5	Describe the manufacture and application of synthetic rubber	Lecture	
V	Polymer	Degradation and Additive	S			
	1	Polymer degradation	1	Describe polymer degradation	Lecture	Evaluation through class
	2	types of degradation - thermal -mechanical photo - hydrolytic and oxidative degradations	7	Classify the types of polymer degradation	Lecture	test, group discussion and quiz
	3	additives for polymers - fillers -plasticizers	5	Discuss the role of additives in polymers	Lecture and group discussion	assessment I
	4	thermal stabilizers - photo stabilizers - antioxidants and colorants.	5	Differentiate thermal and photo stabilizers	Lecture and group discussion	

Course Instructor: M.Shirly Treasa

HOD: G. Leema Rose

Credits: 3

Teaching Module Total Hours: 60 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
T	TAL		Hours	Outcome		Evaluation
1	1 1	Introduction, conventional energy	3	Recall the sources of conventional	Lecture with	Evaluation through class
		sources like coal, oil, gas, agricultural and organic wastes, water power, thermal power and nuclear power.		energy	videos	test and seminar Formative assessment I
	2	Non-conventional energy sources like solar energy and wind energy.	3	Explain non- conventional energy sources	Lecture and group discussion	
	3	Energy from bio-mass and bio-gas, ocean thermal energy, tidal energy.	3	Understand various sources of energy	Lecture	
	4	Geothermal energy and hydrogen energy. Advantages of renewable energy.	3	Discuss the advantages of renewable energy	Lecture and PPT	
II	Solar En	lergy	I	Γ	1	Γ
	1	Solar radiation and its measurement - Introduction, solar constant, solar radiation at the earth's surface, solar radiation geometry and solar radiation data.	3	Explain solar radiations and its measurement	Lecture and videos	Evaluation through class test and seminar Formative assessment II
	2	Solar energy collectors - Introduction, physical principles of the conversion of solar radiation into heat, flat plate and concentration collectors.	3	Understand the principle of solar energy conversion and collectors	Lecture and PPT	
	3	Advantages and disadvantages of concentration collectors over flat collectors.	2	Compare the concentration collectors and flat collectors	Lecture	
	4	Energy balance equation and collector efficiency.	4	Determine energy balance and collector efficiency	Lecture	
III	Wind Ei	nergy				

	1 2 2	Introduction, basic principles of wind energy conversion, power of the wing, forces on the blades. Wind energy conversion, wind data and estimation, site selection.	2	Understand the basis of wind energy Illustrate wind energy conversion	Lecture with videos Lecture with ppt and videos	Evaluation through class test and seminar Formative assessment II
	3	- Horizontal axis and vertical axis machines.	2	of wind machine	and seminar	
	4	Analysis of aerodynamic forces acting on the blade, performance of wind machines.	2	Analyse the forces acting on the blade	Lecture and group discussion	
	5	Generating systems - Introduction, schemes of electric generation, generator control, load control, energy storage. Application of wind energy.	4	Explain generating system and applications of wind energy	Lecture with videos	
IV	Bio-ener	gy	1	1	1	
	1	Introduction, biomass conversion techniques - wet processes and dry processes.	2	Explain biomass and its conversion	Lecture and PPT	Evaluation through class test and quiz Formative
	2	Biogas generation. Classification of biogas plants - floating drum plant and fixed dome type plant. Biogas from plant waste.	3	List out the classification of biogas plants	Lecture and seminar	assessment I
	3	Materials used for biogas generation, selection of site for a biogas plant, digester design. Problems related with biogas plants.	3	Describe the biogas generation and identify the problems related to biogas plant	Lecture and seminar	
	4	Fuel properties of biogas and utilization of biogas.	4	Understand the properties of biogas	Lecture and seminar	
V	Chemica	al energy sources	1	1	1	
	1	Fuel cells - Introduction, conversion efficiency of fuel cells, types of electrodes, work output.	2	Understand the basis of fuel cells	Lecture and seminar	Evaluation through class test and quiz

2	EMF of fuel cells.	2	Determine the	Lecture	Formative
	Applications of fuel		EMF of fuel cells	and	assessment I
	cells.		and explain the	seminar	
			applications of it		
3	Hydrogen energy:	3	Explain hydrogen	Lecture	
	Hydrogen production –		production by	and	
	electrolysis, thermo-		various methods	Seminar	
	chemical, fossil fuel and				
	solar energy methods.				
4	Hydrogen storage and	2	Explain the	Lecture	
	hydrogen transportation.		hydrogen storage	and	
			and hydrogen	seminar	
			transportation		
5	Utilization of hygrogen	3	Describe the	Lecture	
	gas. Hydrogen as an		utilization and	and PPT	
	alternative fuel for motor		safety measures of		
	vehicles. Safety and		hydrogen gas		
	management.				

Course Instructor: B.T Delma

HOD: Dr. G. Leema Rose